IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/33936.html
   My bibliography  Save this paper

Learning Strict Nash Equilibria through Reinforcement

Author

Listed:
  • Ianni, Antonella

Abstract

This paper studies the analytical properties of the reinforcement learning model proposed in Erev and Roth (1998), also termed cumulative reinforcement learning in Laslier et al (2001). This stochastic model of learning in games accounts for two main elements: the law of effect (positive reinforcement of actions that perform well) and the law of practice (the magnitude of the reinforcement effect decreases with players' experience). The main results of the paper show that, if the solution trajectories of the underlying replicator equation converge exponentially fast, then, with probability arbitrarily close to one, all the realizations of the reinforcement learning process will, from some time on, lie within an " band of that solution. The paper improves upon results currently available in the literature by showing that a reinforcement learning process that has been running for some time and is found suffciently close to a strict Nash equilibrium, will reach it with probability one.

Suggested Citation

  • Ianni, Antonella, 2011. "Learning Strict Nash Equilibria through Reinforcement," MPRA Paper 33936, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:33936
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/33936/1/MPRA_paper_33936.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Arthur, W Brian, 1993. "On Designing Economic Agents That Behave Like Human Agents," Journal of Evolutionary Economics, Springer, vol. 3(1), pages 1-22, February.
    3. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    4. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
    5. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
    6. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    7. Michel BenaÔm & J–rgen W. Weibull, 2003. "Deterministic Approximation of Stochastic Evolution in Games," Econometrica, Econometric Society, vol. 71(3), pages 873-903, May.
    8. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    9. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    10. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    11. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    12. Vega-Redondo,Fernando, 2003. "Economics and the Theory of Games," Cambridge Books, Cambridge University Press, number 9780521775908, December.
    13. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, January.
    14. Laslier, Jean-Francois & Topol, Richard & Walliser, Bernard, 2001. "A Behavioral Learning Process in Games," Games and Economic Behavior, Elsevier, vol. 37(2), pages 340-366, November.
    15. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    16. John G. Cross, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 87(2), pages 239-266.
    17. Izquierdo, Luis R. & Izquierdo, Segismundo S. & Gotts, Nicholas M. & Polhill, J. Gary, 2007. "Transient and asymptotic dynamics of reinforcement learning in games," Games and Economic Behavior, Elsevier, vol. 61(2), pages 259-276, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    2. Ioannou, Christos A. & Romero, Julian, 2014. "A generalized approach to belief learning in repeated games," Games and Economic Behavior, Elsevier, vol. 87(C), pages 178-203.
    3. Mandel, Antoine & Gintis, Herbert, 2016. "Decentralized Pricing and the equivalence between Nash and Walrasian equilibrium," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 84-92.

    More about this item

    Keywords

    Strict Nash Equilibrium; Reinforcement Learning;

    JEL classification:

    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:33936. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.