IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v61y2007i2p259-276.html
   My bibliography  Save this article

Transient and asymptotic dynamics of reinforcement learning in games

Author

Listed:
  • Izquierdo, Luis R.
  • Izquierdo, Segismundo S.
  • Gotts, Nicholas M.
  • Polhill, J. Gary

Abstract

No abstract is available for this item.

Suggested Citation

  • Izquierdo, Luis R. & Izquierdo, Segismundo S. & Gotts, Nicholas M. & Polhill, J. Gary, 2007. "Transient and asymptotic dynamics of reinforcement learning in games," Games and Economic Behavior, Elsevier, vol. 61(2), pages 259-276, November.
  • Handle: RePEc:eee:gamebe:v:61:y:2007:i:2:p:259-276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(07)00012-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan Beggs, 2002. "Stochastic evolution with slow learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(2), pages 379-405.
    2. Karandikar, Rajeeva & Mookherjee, Dilip & Ray, Debraj & Vega-Redondo, Fernando, 1998. "Evolving Aspirations and Cooperation," Journal of Economic Theory, Elsevier, vol. 80(2), pages 292-331, June.
    3. Fernando Vega-Redondo & Frédéric Palomino, 1999. "Convergence of aspirations and (partial) cooperation in the prisoner's dilemma," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 465-488.
    4. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    5. Laslier, Jean-Francois & Topol, Richard & Walliser, Bernard, 2001. "A Behavioral Learning Process in Games," Games and Economic Behavior, Elsevier, vol. 37(2), pages 340-366, November.
    6. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    7. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    8. Jean-François Laslier & Bernard Walliser, 2005. "A reinforcement learning process in extensive form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(2), pages 219-227, June.
    9. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
    10. Mookherjee Dilip & Sopher Barry, 1994. "Learning Behavior in an Experimental Matching Pennies Game," Games and Economic Behavior, Elsevier, vol. 7(1), pages 62-91, July.
    11. Borgers, Tilman & Sarin, Rajiv, 2000. "Naive Reinforcement Learning with Endogenous Aspirations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 921-950, November.
    12. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    13. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    14. Mookherjee, Dilip & Sopher, Barry, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Games and Economic Behavior, Elsevier, vol. 19(1), pages 97-132, April.
    15. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
    16. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    17. Binmore, K. & Samuelson, L., 1993. "An Economist's Perspective on the Evolution of Norms," Working papers 9323, Wisconsin Madison - Social Systems.
    18. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    19. Boylan Richard T., 1995. "Continuous Approximation of Dynamical Systems with Randomly Matched Individuals," Journal of Economic Theory, Elsevier, vol. 66(2), pages 615-625, August.
    20. Arthur, W Brian, 1991. "Designing Economic Agents that Act Like Human Agents: A Behavioral Approach to Bounded Rationality," American Economic Review, American Economic Association, vol. 81(2), pages 353-359, May.
    21. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 0203, Economics Division, School of Social Sciences, University of Southampton.
    22. Erev, Ido & Bereby-Meyer, Yoella & Roth, Alvin E., 1999. "The effect of adding a constant to all payoffs: experimental investigation, and implications for reinforcement learning models," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 111-128, May.
    23. Binmore Kenneth G. & Samuelson Larry & Vaughan Richard, 1995. "Musical Chairs: Modeling Noisy Evolution," Games and Economic Behavior, Elsevier, vol. 11(1), pages 1-35, October.
    24. John G. Cross, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 87(2), pages 239-266.
    25. Yan Chen & Fang-Fang Tang, 1998. "Learning and Incentive-Compatible Mechanisms for Public Goods Provision: An Experimental Study," Journal of Political Economy, University of Chicago Press, vol. 106(3), pages 633-662, June.
    26. Boylan, Richard T., 1992. "Laws of large numbers for dynamical systems with randomly matched individuals," Journal of Economic Theory, Elsevier, vol. 57(2), pages 473-504, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    2. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    3. Heymann, D. & Kawamura, E. & Perazzo, R. & Zimmermann, M.G., 2014. "Behavioral heuristics and market patterns in a Bertrand–Edgeworth game," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 124-139.
    4. Schuster, Stephan, 2012. "Applications in Agent-Based Computational Economics," MPRA Paper 47201, University Library of Munich, Germany.
    5. Schuster, Stephan, 2010. "Network Formation with Adaptive Agents," MPRA Paper 27388, University Library of Munich, Germany.
    6. José Manuel Galán & Luis R. Izquierdo & Segismundo S. Izquierdo & José Ignacio Santos & Ricardo del Olmo & Adolfo López-Paredes & Bruce Edmonds, 2009. "Errors and Artefacts in Agent-Based Modelling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-1.
    7. Yu Zhang & Jason Leezer, 2010. "Simulating human-like decisions in a memory-based agent model," Computational and Mathematical Organization Theory, Springer, vol. 16(4), pages 373-399, December.
    8. Dridi, Slimane & Lehmann, Laurent, 2014. "On learning dynamics underlying the evolution of learning rules," Theoretical Population Biology, Elsevier, vol. 91(C), pages 20-36.
    9. Segismundo S. Izquierdo & Luis R. Izquierdo & Nicholas M. Gotts, 2008. "Reinforcement Learning Dynamics in Social Dilemmas," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segismundo S. Izquierdo & Luis R. Izquierdo & Nicholas M. Gotts, 2008. "Reinforcement Learning Dynamics in Social Dilemmas," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-1.
    2. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    3. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    4. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    5. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    6. Alanyali, Murat, 2010. "A note on adjusted replicator dynamics in iterated games," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 86-98, January.
    7. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, Open Access Journal, vol. 9(2), pages 1-67, May.
    8. Schuster, Stephan, 2012. "Applications in Agent-Based Computational Economics," MPRA Paper 47201, University Library of Munich, Germany.
    9. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    10. Schuster, Stephan, 2010. "Network Formation with Adaptive Agents," MPRA Paper 27388, University Library of Munich, Germany.
    11. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    12. Naoki Funai, 2019. "Convergence results on stochastic adaptive learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 907-934, November.
    13. Mitropoulos, Atanasios, 2001. "Learning under minimal information: An experiment on mutual fate control," Journal of Economic Psychology, Elsevier, vol. 22(4), pages 523-557, August.
    14. Erik Mohlin & Robert Ostling & Joseph Tao-yi Wang, 2014. "Learning by Imitation in Games: Theory, Field, and Laboratory," Economics Series Working Papers 734, University of Oxford, Department of Economics.
    15. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    16. Osili, Una Okonkwo & Paulson, Anna, 2014. "Crises and confidence: Systemic banking crises and depositor behavior," Journal of Financial Economics, Elsevier, vol. 111(3), pages 646-660.
    17. Walter Gutjahr, 2006. "Interaction dynamics of two reinforcement learners," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(1), pages 59-86, February.
    18. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    19. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    20. Tilman Börgers & Antonio J. Morales & Rajiv Sarin, 2004. "Expedient and Monotone Learning Rules," Econometrica, Econometric Society, vol. 72(2), pages 383-405, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:61:y:2007:i:2:p:259-276. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.