IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v36y2012i3p433-454.html
   My bibliography  Save this article

Popularity of reinforcement-based and belief-based learning models: An evolutionary approach

Author

Listed:
  • Dziubiński, Marcin
  • Roy, Jaideep

Abstract

In an evolutionary model, players from a given population meet randomly in pairs each instant to play a coordination game. At each instant, the learning model used is determined via some replicator dynamics that respects payoff fitness. We allow for two such models: a belief-based best-response model that uses a costly predictor, and a costless reinforcement-based one. This generates dynamics over the choice of learning models and the consequent choices of endogenous variables. We report conditions under which the long run outcomes are efficient (or inefficient) and they support the exclusive use of either of the models (or their co-existence).

Suggested Citation

  • Dziubiński, Marcin & Roy, Jaideep, 2012. "Popularity of reinforcement-based and belief-based learning models: An evolutionary approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 433-454.
  • Handle: RePEc:eee:dyncon:v:36:y:2012:i:3:p:433-454 DOI: 10.1016/j.jedc.2011.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188911001928
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Honkapohja, Seppo & Mitra, Kaushik, 2003. "Learning with bounded memory in stochastic models," Journal of Economic Dynamics and Control, Elsevier, pages 1437-1457.
    3. Crawford, Vincent P, 1995. "Adaptive Dynamics in Coordination Games," Econometrica, Econometric Society, vol. 63(1), pages 103-143, January.
    4. Fernando Vega-Redondo & Frédéric Palomino, 1999. "Convergence of aspirations and (partial) cooperation in the prisoner's dilemma," International Journal of Game Theory, Springer;Game Theory Society, pages 465-488.
    5. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    6. Bouchez, Nicole & Friedman, Daniel, 2008. "Equilibrium Convergence in Normal Form Games," Handbook of Experimental Economics Results, Elsevier.
    7. Goeree, Jacob K. & Hommes, Cars H., 2000. "Heterogeneous beliefs and the non-linear cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 761-798, June.
    8. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    9. Mookherjee Dilip & Sopher Barry, 1994. "Learning Behavior in an Experimental Matching Pennies Game," Games and Economic Behavior, Elsevier, vol. 7(1), pages 62-91, July.
    10. Chryssi Giannitsarou, 2003. "Heterogeneous Learning," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 6(4), pages 885-906, October.
    11. Robson, Arthur J. & Vega-Redondo, Fernando, 1996. "Efficient Equilibrium Selection in Evolutionary Games with Random Matching," Journal of Economic Theory, Elsevier, vol. 70(1), pages 65-92, July.
    12. Van Huyck, John B & Battalio, Raymond C & Beil, Richard O, 1990. "Tacit Coordination Games, Strategic Uncertainty, and Coordination Failure," American Economic Review, American Economic Association, vol. 80(1), pages 234-248, March.
    13. Samuelson, Larry, 2001. "Introduction to the Evolution of Preferences," Journal of Economic Theory, Elsevier, vol. 97(2), pages 225-230, April.
    14. Bergin, James & Lipman, Barton L, 1996. "Evolution with State-Dependent Mutations," Econometrica, Econometric Society, pages 943-956.
    15. Josephson, Jens, 2009. "Stochastic adaptation in finite games played by heterogeneous populations," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1543-1554, August.
    16. Dixon, Huw David, 2000. "Keeping up with the Joneses: competition and the evolution of collusion," Journal of Economic Behavior & Organization, Elsevier, vol. 43(2), pages 223-238, October.
    17. Cooper, Russell, et al, 1990. "Selection Criteria in Coordination Games: Some Experimental Results," American Economic Review, American Economic Association, vol. 80(1), pages 218-233, March.
    18. Guse, Eran A., 2005. "Stability properties for learning with heterogeneous expectations and multiple equilibria," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1623-1642, October.
    19. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, pages 29-56.
    20. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, January.
    21. Camerer, Colin F. & Ho, Teck H. & Chong, Juin-Kuan, 2008. "Learning and Equilibrium in Games," Handbook of Experimental Economics Results, Elsevier.
    22. Juang, Wei-Torng, 2002. "Rule Evolution and Equilibrium Selection," Games and Economic Behavior, Elsevier, vol. 39(1), pages 71-90, April.
    23. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    24. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    25. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    26. Evans, George W. & Honkapohja, Seppo & Marimon, Ramon, 2001. "Convergence In Monetary Inflation Models With Heterogeneous Learning Rules," Macroeconomic Dynamics, Cambridge University Press, vol. 5(01), pages 1-31, February.
    27. Chiarella, Carl & He, Xue-Zhong, 2003. "Dynamics of beliefs and learning under aL-processes -- the heterogeneous case," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 503-531, January.
    28. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, pages 7-42.
    29. R. Isaac & David Schmidtz & James Walker, 1989. "The assurance problem in a laboratory market," Public Choice, Springer, vol. 62(3), pages 217-236, September.
    30. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    31. Jeffrey S. Banks & Charles R. Plott & David P. Porter, 1988. "An Experimental Analysis of Unanimity in Public Goods Provision Mechanisms," Review of Economic Studies, Oxford University Press, vol. 55(2), pages 301-322.
    32. Roth, Alvin E & Schoumaker, Francoise, 1983. "Expectations and Reputations in Bargaining: An Experimental Study," American Economic Review, American Economic Association, vol. 73(3), pages 362-372, June.
    33. John B. Van Huyck & Raymond C. Battalio & Richard O. Beil, 1991. "Strategic Uncertainty, Equilibrium Selection, and Coordination Failure in Average Opinion Games," The Quarterly Journal of Economics, Oxford University Press, vol. 106(3), pages 885-910.
    34. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186 Elsevier.
    35. Friedman, Daniel, 1996. "Equilibrium in Evolutionary Games: Some Experimental Results," Economic Journal, Royal Economic Society, vol. 106(434), pages 1-25, January.
    36. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Co-evolution; Best-response; Aspirations; Coordination games;

    JEL classification:

    • D01 - Microeconomics - - General - - - Microeconomic Behavior: Underlying Principles
    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:36:y:2012:i:3:p:433-454. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.