IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v14y2006i1p59-86.html
   My bibliography  Save this article

Interaction dynamics of two reinforcement learners

Author

Listed:
  • Walter Gutjahr

    ()

Abstract

The paper investigates a stochastic model where two agents (persons, companies, institutions, states, software agents or other) learn interactive behavior in a series of alternating moves. Each agent is assumed to perform “stimulus-response-consequence” learning, as studied in psychology. In the presented model, the response of one agent to the other agent's move is both the stimulus for the other agent's next move and part of the consequence for the other agent's previous move. After deriving general properties of the model, especially concerning convergence to limit cycles, we concentrate on an asymptotic case where the learning rate tends to zero (“slow learning”). In this case, the dynamics can be described by a system of deterministic differential equations. For reward structures derived from [2×2] bimatrix games, fixed points are determined, and for the special case of the prisoner's dilemma, the dynamics is analyzed in more detail on the assumptions that both agents start with the same or with different reaction probabilities. Copyright Springer-Verlag 2006

Suggested Citation

  • Walter Gutjahr, 2006. "Interaction dynamics of two reinforcement learners," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(1), pages 59-86, February.
  • Handle: RePEc:spr:cejnor:v:14:y:2006:i:1:p:59-86
    DOI: 10.1007/s10100-006-0160-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-006-0160-y
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    2. Michel BenaÔm & J–rgen W. Weibull, 2003. "Deterministic Approximation of Stochastic Evolution in Games," Econometrica, Econometric Society, vol. 71(3), pages 873-903, May.
    3. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    4. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    5. Richard J. Herrnstein & Drazen Prelec, 1991. "Melioration: A Theory of Distributed Choice," Journal of Economic Perspectives, American Economic Association, vol. 5(3), pages 137-156, Summer.
    6. Ron Smith & Martin Sola & Fabio Spagnolo, 2000. "The Prisoner's Dilemma and Regime-Switching in the Greek-Turkish Arms Race," Journal of Peace Research, Peace Research Institute Oslo, vol. 37(6), pages 737-750, November.
    7. Laslier, Jean-Francois & Topol, Richard & Walliser, Bernard, 2001. "A Behavioral Learning Process in Games," Games and Economic Behavior, Elsevier, vol. 37(2), pages 340-366, November.
    8. Brian Skyrms & Robin Pemantle, 2004. "Learning to Network," Levine's Bibliography 122247000000000436, UCLA Department of Economics.
    9. M. Posch & A. Pichler & K. Sigmund, 1998. "The Efficiency of Adapting Aspiration Levels," Working Papers ir98103, International Institute for Applied Systems Analysis.
    10. Greenwald, Amy & Friedman, Eric J. & Shenker, Scott, 2001. "Learning in Network Contexts: Experimental Results from Simulations," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 80-123, April.
    11. John G. Cross, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 87(2), pages 239-266.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:14:y:2006:i:1:p:59-86. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.