IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

The projection dynamic and the geometry of population games

  • Lahkar, Ratul
  • Sandholm, William H.
Registered author(s):

    The projection dynamic is an evolutionary dynamic for population games. It is derived from a model of individual choice in which agents abandon their current strategies at rates inversely proportional to the strategies' current levels of use. The dynamic admits a simple geometric definition, its rest points coincide with the Nash equilibria of the underlying game, and it converges globally to Nash equilibrium in potential games and in stable games.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WFW-4S01WM8-2/2/b345e5f01316479eb53e3f8bc26dde21
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Games and Economic Behavior.

    Volume (Year): 64 (2008)
    Issue (Month): 2 (November)
    Pages: 565-590

    as
    in new window

    Handle: RePEc:eee:gamebe:v:64:y:2008:i:2:p:565-590
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/622836

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Karl H. Schlag, 1995. "Why Imitate, and if so, How? A Bounded Rational Approach to Multi-Armed Bandits," Discussion Paper Serie B 361, University of Bonn, Germany, revised Mar 1996.
    2. Ed Hopkins, 2001. "Two Competing Models of How People Learn in Games," Levine's Working Paper Archive 625018000000000226, David K. Levine.
    3. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    4. Sandholm, William H. & DokumacI, Emin & Lahkar, Ratul, 2008. "The projection dynamic and the replicator dynamic," Games and Economic Behavior, Elsevier, vol. 64(2), pages 666-683, November.
    5. J. Swinkels, 2010. "Adjustment Dynamics and Rational Play in Games," Levine's Working Paper Archive 456, David K. Levine.
    6. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    7. Hofbauer, Josef & Sandholm, William H., 2007. "Evolution in games with randomly disturbed payoffs," Journal of Economic Theory, Elsevier, vol. 132(1), pages 47-69, January.
    8. Michel BenaÔm & J–rgen W. Weibull, 2003. "Deterministic Approximation of Stochastic Evolution in Games," Econometrica, Econometric Society, vol. 71(3), pages 873-903, 05.
    9. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    10. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, June.
    11. I. Gilboa & A. Matsui, 2010. "Social Stability and Equilibrium," Levine's Working Paper Archive 534, David K. Levine.
    12. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    13. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-66, May.
    14. Sandholm, William H., 2003. "Evolution and equilibrium under inexact information," Games and Economic Behavior, Elsevier, vol. 44(2), pages 343-378, August.
    15. Schlag, Karl H., 1994. "Why Imitate, and if so, How? Exploring a Model of Social Evolution," Discussion Paper Serie B 296, University of Bonn, Germany.
    16. Sandholm, William H., 2005. "Excess payoff dynamics and other well-behaved evolutionary dynamics," Journal of Economic Theory, Elsevier, vol. 124(2), pages 149-170, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:64:y:2008:i:2:p:565-590. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.