IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Humans versus computer algorithms in repeated mixed strategy games

  • Spiliopoulos, Leonidas

This paper is concerned with the modeling of strategic change in humans’ behavior when facing different types of opponents. In order to implement this efficiently a mixed experimental setup was used where subjects played a game with a unique mixed strategy Nash equilibrium for 100 rounds against 3 preprogrammed computer algorithms (CAs) designed to exploit different modes of play. In this context, substituting human opponents with computer algorithms designed to exploit commonly occurring human behavior increases the experimental control of the researcher allowing for more powerful statistical tests. The results indicate that subjects significantly change their behavior conditional on the type of CA opponent, exhibiting within-sub jects heterogeneity, but that there exists comparatively little between-subjects heterogeneity since players seemed to follow very similar strategies against each algorithm. Simple heuristics, such as win-stay/lose-shift, were found to model subjects and make out of sample predictions as well as, if not better than, more complicated models such as individually estimated EWA learning models which suffered from overfitting. Subjects modified their strategies in the direction of better response as calculated from CA simulations of various learning models, albeit not perfectly. Examples include the observation that subjects randomized more effectively as the pattern recognition depth of the CAs increased, and the drastic reduction in the use of the win-stay/lose-shift heuristic when facing a CA designed to exploit this behavior.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/6672/1/MPRA_paper_6672.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 6672.

as
in new window

Length:
Date of creation: 09 Jan 2008
Date of revision:
Handle: RePEc:pra:mprapa:6672
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jason Shachat & J. Todd Swarthout, 2004. "Do we detect and exploit mixed strategy play by opponents?," Mathematical Methods of Operations Research, Springer, vol. 59(3), pages 359-373, 07.
  2. Smith, Vernon L & Walker, James M, 1993. "Rewards, Experience and Decision Costs in First Price Auctions," Economic Inquiry, Western Economic Association International, vol. 31(2), pages 237-45, April.
  3. Jason Shachat & J. Todd Swarthout, 2002. "Learning about Learning in Games through Experimental Control of Strategic Interdependence," Experimental Economics Center Working Paper Series 2006-17, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University, revised Aug 2008.
  4. Spiliopoulos, Leonidas, 2008. "Do repeated game players detect patterns in opponents? Revisiting the Nyarko & Schotter belief elicitation experiment," MPRA Paper 6666, University Library of Munich, Germany.
  5. Peter Dürsch & Albert Kolb & Jörg Oechssler & Burkhard C. Schipper, 2005. "Rage Against the Machines: How Subjects Learn to Play Against Computers," Working Papers 0423, University of Heidelberg, Department of Economics, revised Oct 2005.
  6. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
  7. Walker, James M. & Smith, Vernon L. & Cox, James C., 1987. "Bidding behavior in first price sealed bid auctions : Use of computerized Nash competitors," Economics Letters, Elsevier, vol. 23(3), pages 239-244.
  8. Atanasios Mitropoulos, 2001. "On the Measurement of the Predictive Success of Learning Theories in Repeated Games," Experimental 0110001, EconWPA.
  9. Yaw Nyarko & Andrew Schotter, 2002. "An Experimental Study of Belief Learning Using Elicited Beliefs," Econometrica, Econometric Society, vol. 70(3), pages 971-1005, May.
  10. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  11. repec:spr:compst:v:59:y:2004:i:3:p:359-373 is not listed on IDEAS
  12. Harrison, Glenn W, 1989. "Theory and Misbehavior of First-Price Auctions," American Economic Review, American Economic Association, vol. 79(4), pages 749-62, September.
  13. Bonetti, Shane, 1998. "Experimental economics and deception," Journal of Economic Psychology, Elsevier, vol. 19(3), pages 377-395, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6672. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.