IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/19-50.html
   My bibliography  Save this paper

Monetary Payoff and Utility Function in Adaptive Learning Models

Author

Listed:
  • Erhao Xie

Abstract

When players repeatedly face an identical or similar game (e.g., coordination game, technology adoption game, or product choice game), they may learn through experience to perform better in the future. This learning behaviour has important economic implications. It determines which economic outcome a game will reach and how fast it will get there. Given the importance of players’ learning behaviours, economists have proposed various adaptive models to study them. These models are usually estimated and tested using experimental data. Moreover, economists usually assume that individuals’ preference—their utility—is equal to the monetary reward they obtain. However, such an assumption can be wrong since players are not necessarily risk neutral. They could be risk averse or risk loving. I study the consequences of this false assumption and propose a method to deal with it. I then apply the method to an existing experimental dataset. The estimation results show that utility does not necessarily equal monetary reward. Imposing such a false assumption leads researchers to draw incorrect conclusions about players’ learning behaviours. For instance, we may incorrectly estimate the speed of learning and wrongly predict the final outcome of a game. In contrast, the method I propose in this paper allows researchers to achieve more accurate estimates.

Suggested Citation

  • Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
  • Handle: RePEc:bca:bocawp:19-50
    as

    Download full text from publisher

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2019/12/swp2019-50.pdf
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David K., 1995. "Consistency and cautious fictitious play," Journal of Economic Dynamics and Control, Elsevier, vol. 19(5-7), pages 1065-1089.
    2. Frank Heinemann & Rosemarie Nagel & Peter Ockenfels, 2004. "Measuring Strategic Uncertainty in Coordination Games," CESifo Working Paper Series 1364, CESifo.
    3. Ernst Fehr & Klaus M. Schmidt, 1999. "A Theory of Fairness, Competition, and Cooperation," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 817-868.
    4. Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
    5. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    6. Reinhard Selten & Thorsten Chmura, 2008. "Stationary Concepts for Experimental 2x2-Games," American Economic Review, American Economic Association, vol. 98(3), pages 938-966, June.
    7. Timothy C. Salmon, 2001. "An Evaluation of Econometric Models of Adaptive Learning," Econometrica, Econometric Society, vol. 69(6), pages 1597-1628, November.
    8. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    9. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    10. Mookherjee Dilip & Sopher Barry, 1994. "Learning Behavior in an Experimental Matching Pennies Game," Games and Economic Behavior, Elsevier, vol. 7(1), pages 62-91, July.
    11. Frank Heinemann & Rosemarie Nagel & Peter Ockenfels, 2009. "Measuring Strategic Uncertainty in Coordination Games," Review of Economic Studies, Oxford University Press, vol. 76(1), pages 181-221.
    12. Van Huyck, John B & Battalio, Raymond C & Beil, Richard O, 1990. "Tacit Coordination Games, Strategic Uncertainty, and Coordination Failure," American Economic Review, American Economic Association, vol. 80(1), pages 234-248, March.
    13. Kahneman, Daniel & Knetsch, Jack L & Thaler, Richard H, 1986. "Fairness and the Assumptions of Economics," The Journal of Business, University of Chicago Press, vol. 59(4), pages 285-300, October.
    14. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    15. Chmura, Thorsten & Goerg, Sebastian J. & Selten, Reinhard, 2014. "Generalized Impulse Balance: An Experimental Test for a Class of 3 × 3 Games," Review of Behavioral Economics, now publishers, vol. 1(1-2), pages 27-53, January.
    16. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    17. Francesco Feri & Bernd Irlenbusch & Matthias Sutter, 2010. "Efficiency Gains from Team-Based Coordination—Large-Scale Experimental Evidence," American Economic Review, American Economic Association, vol. 100(4), pages 1892-1912, September.
    18. Goeree, Jacob K. & Holt, Charles A. & Palfrey, Thomas R., 2003. "Risk averse behavior in generalized matching pennies games," Games and Economic Behavior, Elsevier, vol. 45(1), pages 97-113, October.
    19. Guth, Werner & Schmittberger, Rolf & Schwarze, Bernd, 1982. "An experimental analysis of ultimatum bargaining," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 367-388, December.
    20. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    21. Antonio Cabrales & Walter Garcia Fontes, 2000. "Estimating learning models from experimental data," Economics Working Papers 501, Department of Economics and Business, Universitat Pompeu Fabra.
    22. Mookherjee, Dilip & Sopher, Barry, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Games and Economic Behavior, Elsevier, vol. 19(1), pages 97-132, April.
    23. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    24. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    25. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    26. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
    27. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Econometric and statistical methods; Economic models;

    JEL classification:

    • C57 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Econometrics of Games and Auctions
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:19-50. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/bocgvca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.