IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v10y2012i4p475-503.html
   My bibliography  Save this article

Dynamic learning in behavioral games: A hidden Markov mixture of experts approach

Author

Listed:
  • Asim Ansari

    ()

  • Ricardo Montoya

    ()

  • Oded Netzer

    ()

Abstract

Over the course of a repeated game, players often exhibit learning in selecting their best response. Research in economics and marketing has identified two key types of learning rules: belief and reinforcement. It has been shown that players use either one of these learning rules or a combination of them, as in the Experience-Weighted Attraction (EWA) model. Accounting for such learning may help in understanding and predicting the outcomes of games. In this research, we demonstrate that players not only employ learning rules to determine what actions to choose based on past choices and outcomes, but also change their learning rules over the course of the game. We investigate the degree of state dependence in learning and uncover the latent learning rules and learning paths used by the players. We build a non-homogeneous hidden Markov mixture of experts model which captures shifts between different learning rules over the course of a repeated game. The transition between the learning rule states can be affected by the players’ experiences in the previous round of the game. We empirically validate our model using data from six games that have been previously used in the literature. We demonstrate that one can obtain a richer understanding of how different learning rules impact the observed strategy choices of players by accounting for the latent dynamics in the learning rules. In addition, we show that such an approach can improve our ability to predict observed choices in games. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Asim Ansari & Ricardo Montoya & Oded Netzer, 2012. "Dynamic learning in behavioral games: A hidden Markov mixture of experts approach," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 475-503, December.
  • Handle: RePEc:kap:qmktec:v:10:y:2012:i:4:p:475-503
    DOI: 10.1007/s11129-012-9125-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-012-9125-8
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crawford, Vincent P, 1995. "Adaptive Dynamics in Coordination Games," Econometrica, Econometric Society, vol. 63(1), pages 103-143, January.
    2. Stahl, Dale O., 2000. "Rule Learning in Symmetric Normal-Form Games: Theory and Evidence," Games and Economic Behavior, Elsevier, vol. 32(1), pages 105-138, July.
    3. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    4. Timothy C. Salmon, 2001. "An Evaluation of Econometric Models of Adaptive Learning," Econometrica, Econometric Society, vol. 69(6), pages 1597-1628, November.
    5. Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
    6. Colin Camerer & Teck Ho & Kuan Chong, 2003. "Models of Thinking, Learning, and Teaching in Games," American Economic Review, American Economic Association, vol. 93(2), pages 192-195, May.
    7. Mookherjee Dilip & Sopher Barry, 1994. "Learning Behavior in an Experimental Matching Pennies Game," Games and Economic Behavior, Elsevier, vol. 7(1), pages 62-91, July.
    8. John Huyck & Raymond Battalio & Frederick Rankin, 2007. "Selection dynamics and adaptive behavior without much information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 53-65, October.
    9. Van Huyck, John B & Battalio, Raymond C & Beil, Richard O, 1990. "Tacit Coordination Games, Strategic Uncertainty, and Coordination Failure," American Economic Review, American Economic Association, vol. 80(1), pages 234-248, March.
    10. Selten, Reinhard, 1991. "Evolution, learning, and economic behavior," Games and Economic Behavior, Elsevier, vol. 3(1), pages 3-24, February.
    11. Howard Kunreuther & Gabriel Silvasi & Eric T. Bradlow & Dylan Small, 2009. "Bayesian analysis of deterministic and stochastic prisoner's dilemma games," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 4(5), pages 363-384, August.
    12. Stahl, Dale O., 2001. "Population rule learning in symmetric normal-form games: theory and evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 45(1), pages 19-35, May.
    13. Van Huyck, John B. & Cook, Joseph P. & Battalio, Raymond C., 1997. "Adaptive behavior and coordination failure," Journal of Economic Behavior & Organization, Elsevier, vol. 32(4), pages 483-503, April.
    14. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    15. Mookherjee, Dilip & Sopher, Barry, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Games and Economic Behavior, Elsevier, vol. 19(1), pages 97-132, April.
    16. Huck, Steffen & Normann, Hans-Theo & Oechssler, Jorg, 1999. "Learning in Cournot Oligopoly--An Experiment," Economic Journal, Royal Economic Society, vol. 109(454), pages 80-95, March.
    17. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    18. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    19. Asim Ansari & Raghuram Iyengar, 2006. "Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 631-657, December.
    20. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    21. Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
    22. Dale O. Stahl, 1999. "Evidence based rules and learning in symmetric normal-form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(1), pages 111-130.
    23. Ho, Teck-Hua & Camerer, Colin & Weigelt, Keith, 1998. "Iterated Dominance and Iterated Best Response in Experimental "p-Beauty Contests."," American Economic Review, American Economic Association, vol. 88(4), pages 947-969, September.
    24. Nathaniel T Wilcox, 2006. "Theories of Learning in Games and Heterogeneity Bias," Econometrica, Econometric Society, vol. 74(5), pages 1271-1292, September.
    25. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, March.
    26. Rapoport, Amnon & Amaldoss, Wilfred, 2000. "Mixed strategies and iterative elimination of strongly dominated strategies: an experimental investigation of states of knowledge," Journal of Economic Behavior & Organization, Elsevier, vol. 42(4), pages 483-521, August.
    27. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Learning; Behavioral game theory; Experimental economics; Hidden Markov mixture of experts model; Bayesian estimation; c5; c7; c11; D83;

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:10:y:2012:i:4:p:475-503. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.