IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v150y2018icp202-219.html
   My bibliography  Save this article

Voluntary information acquisition in an asymmetric-Information game:comparing learning theories in the laboratory

Author

Listed:
  • Wen, Yuanji

Abstract

This paper uses an experimental design of voluntary information acquisition to assess the information assumptions of different learning models. The design is implemented in two-stage asymmetric-information games. Subjects’ information-seeking behavior reveals that they tend to choose certain information sets that are consistent with belief-based learning theories rather than reinforcement theories. A hybrid-learning model with information acquisition that is a variant of the Generalized Experience-Weighted-Attraction (GEWA) model (Shafran, 2012) is also proposed. It successfully captures the different learning speeds of two groups of subjects (i.e., informed and uninformed subjects), and shows that once information acquisition data is added into a structural model that focuses on action data alone, the performance is enhanced. Additional individual analysis indicates that the information acquisition behavior assumed by learning models appears to suggest the learning rule subjects follow. The results suggest that tracking subjects’ voluntary information choices is a useful tool for analyzing their learning behaviors.

Suggested Citation

  • Wen, Yuanji, 2018. "Voluntary information acquisition in an asymmetric-Information game:comparing learning theories in the laboratory," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 202-219.
  • Handle: RePEc:eee:jeborg:v:150:y:2018:i:c:p:202-219
    DOI: 10.1016/j.jebo.2018.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268118300969
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel T. Knoepfle & Joseph Tao-yi Wang & Colin F. Camerer, 2009. "Studying Learning in Games Using Eye-Tracking," Journal of the European Economic Association, MIT Press, vol. 7(2-3), pages 388-398, 04-05.
    2. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    3. Robert J. Aumann, 1995. "Repeated Games with Incomplete Information," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011476, October.
    4. Mookherjee Dilip & Sopher Barry, 1994. "Learning Behavior in an Experimental Matching Pennies Game," Games and Economic Behavior, Elsevier, vol. 7(1), pages 62-91, July.
    5. Vincent P. Crawford & Miguel A. Costa-Gomes, 2006. "Cognition and Behavior in Two-Person Guessing Games: An Experimental Study," American Economic Review, American Economic Association, vol. 96(5), pages 1737-1768, December.
    6. Spiliopoulos, Leonidas, 2012. "Pattern recognition and subjective belief learning in a repeated constant-sum game," Games and Economic Behavior, Elsevier, vol. 75(2), pages 921-935.
    7. David Danz & Dietmar Fehr & Dorothea Kübler, 2012. "Information and beliefs in a repeated normal-form game," Experimental Economics, Springer;Economic Science Association, vol. 15(4), pages 622-640, December.
    8. Jacquemet, Nicolas & Koessler, Frédéric, 2013. "Using or hiding private information? An experimental study of zero-sum repeated games with incomplete information," Games and Economic Behavior, Elsevier, vol. 78(C), pages 103-120.
    9. Costa-Gomes, Miguel & Crawford, Vincent P & Broseta, Bruno, 2001. "Cognition and Behavior in Normal-Form Games: An Experimental Study," Econometrica, Econometric Society, vol. 69(5), pages 1193-1235, September.
    10. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    11. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    12. Martin G. Kocher & Matthias Sutter, 2005. "The Decision Maker Matters: Individual Versus Group Behaviour in Experimental Beauty-Contest Games," Economic Journal, Royal Economic Society, vol. 115(500), pages 200-223, January.
    13. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    14. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    15. Glosten, Lawrence R, 1994. " Is the Electronic Open Limit Order Book Inevitable?," Journal of Finance, American Finance Association, vol. 49(4), pages 1127-1161, September.
    16. repec:hal:journl:halshs-00773412 is not listed on IDEAS
    17. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 10(2), pages 171-178, June.
    18. Isabelle Brocas & Juan D. Carrillo & Stephanie W. Wang & Colin F. Camerer, 2014. "Imperfect Choice or Imperfect Attention? Understanding Strategic Thinking in Private Information Games," Review of Economic Studies, Oxford University Press, vol. 81(3), pages 944-970.
    19. Shafran, Aric P., 2012. "Learning in games with risky payoffs," Games and Economic Behavior, Elsevier, vol. 75(1), pages 354-371.
    20. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    21. Yaw Nyarko & Andrew Schotter, 2002. "An Experimental Study of Belief Learning Using Elicited Beliefs," Econometrica, Econometric Society, vol. 70(3), pages 971-1005, May.
    22. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    23. Tang, Fang-Fang, 2001. "Anticipatory learning in two-person games: some experimental results," Journal of Economic Behavior & Organization, Elsevier, vol. 44(2), pages 221-232, February.
    24. Andrés Salamanca & Olga Manrique Chaparro, 2016. "Some Strategic Aspects of Private Information: An Experimental Study," Working Papers hal-01305213, HAL.
    25. Timothy Salmon, 2004. "Evidence for Learning to Learn Behavior in Normal Form Games," Theory and Decision, Springer, vol. 56(4), pages 367-404, April.
    26. Feltovich, Nick, 1999. "Equilibrium and reinforcement learning in private-information games: An experimental study," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1605-1632, September.
    27. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    28. Johnson, Eric J. & Camerer, Colin & Sen, Sankar & Rymon, Talia, 2002. "Detecting Failures of Backward Induction: Monitoring Information Search in Sequential Bargaining," Journal of Economic Theory, Elsevier, vol. 104(1), pages 16-47, May.
    29. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    30. TeckH. Ho & Xin Wang & ColinF. Camerer, 2008. "Individual Differences in EWA Learning with Partial Payoff Information," Economic Journal, Royal Economic Society, vol. 118(525), pages 37-59, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Discrimination among learning models; Historical information lookups; Mixed-population learning; Two-stage asymmetric-information game;

    JEL classification:

    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:150:y:2018:i:c:p:202-219. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jebo .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.