IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13611-d948750.html
   My bibliography  Save this article

Scaling Up Ecovillagers’ Lifestyles Can Help to Decarbonise Europe

Author

Listed:
  • Franziska Wiest

    (Faculty of Environmental, Regional and Educational Sciences, University of Graz, 8010 Graz, Austria)

  • M. Gabriela Gamarra Scavone

    (Faculty of Geoscience, Utrecht University, 3584 CB Utrecht, The Netherlands)

  • Maya Tsuboya Newell

    (Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8511, Japan)

  • Ilona M. Otto

    (Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria)

  • Andrew K. Ringsmuth

    (Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria
    Complexity Science Hub Vienna, 1080 Vienna, Austria)

Abstract

Decarbonisation is an essential response to the threat of climate change. To achieve Europe’s net-zero 2050 climate targets, radical technological and social changes are required. Lifestyle changes for reducing greenhouse gas (GHG) emissions are an important component of complex systemic transformation. The typical behaviour of inhabitants in ecovillages is potentially more conducive to sustainable lifestyles than the current European standard lifestyle. This study explores the potential of ecovillagers' lifestyles to contribute to decarbonisation using the Multilevel Perspective (MLP) theoretical framework. The research data were obtained through the model tool EUCalc and an online survey of 73 ecovillage residents in 24 European countries. The results indicate that current ecovillagers’ lifestyles, regarding home, consumption, diet, and mobility, would continue to produce 40% fewer emissions per capita than the standard European lifestyle by 2050. The study identifies which ecovillage behaviours would produce the largest reductions in per-capita CO 2 eq emissions if adopted by society more broadly.

Suggested Citation

  • Franziska Wiest & M. Gabriela Gamarra Scavone & Maya Tsuboya Newell & Ilona M. Otto & Andrew K. Ringsmuth, 2022. "Scaling Up Ecovillagers’ Lifestyles Can Help to Decarbonise Europe," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13611-:d:948750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    2. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    3. Tukker, Arnold & Goldbohm, R. Alexandra & de Koning, Arjan & Verheijden, Marieke & Kleijn, René & Wolf, Oliver & Pérez-Domínguez, Ignacio & Rueda-Cantuche, Jose M., 2011. "Environmental impacts of changes to healthier diets in Europe," Ecological Economics, Elsevier, vol. 70(10), pages 1776-1788, August.
    4. Christine Ipsen & Marc van Veldhoven & Kathrin Kirchner & John Paulin Hansen, 2021. "Six Key Advantages and Disadvantages of Working from Home in Europe during COVID-19," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    5. Köhler, Jonathan & Turnheim, Bruno & Hodson, Mike, 2020. "Low carbon transitions pathways in mobility: Applying the MLP in a combined case study and simulation bridging analysis of passenger transport in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    6. Felix Creutzig & Leila Niamir & Xuemei Bai & Max Callaghan & Jonathan Cullen & Julio Díaz-José & Maria Figueroa & Arnulf Grubler & William F. Lamb & Adrian Leip & Eric Masanet & Érika Mata & Linus Mat, 2022. "Demand-side solutions to climate change mitigation consistent with high levels of well-being," Nature Climate Change, Nature, vol. 12(1), pages 36-46, January.
    7. Gheorghiu, Alexandra & Delhomme, Patricia, 2018. "For which types of trips do French drivers carpool? Motivations underlying carpooling for different types of trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 460-475.
    8. Bijay Singh & Martina M. Keitsch & Mahesh Shrestha, 2019. "Scaling up sustainability: Concepts and practices of the ecovillage approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(2), pages 237-244, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhanglan & Shao, Qinglong & Su, Yantao & Zhang, Dan, 2021. "A socio-technical transition path for new energy vehicles in China: A multi-level perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    2. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    3. Sunio, Varsolo & Gaspay, Sandy & Guillen, Marie Danielle & Mariano, Patricia & Mora, Regina, 2019. "Analysis of the public transport modernization via system reconfiguration: The ongoing case in the Philippines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 1-19.
    4. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2022. "Investigating low-carbon pathways for hydrocarbon-dependent rentier states: Economic transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    5. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    6. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Johanna Leväsluoto & Johanna Kohl & Anton Sigfrids & Jussi Pihlajamäki & Janne Martikainen, 2021. "Digitalization as an Engine for Change? Building a Vision Pathway towards a Sustainable Health Care System by Using the MLP and Health Economic Decision Modelling," Sustainability, MDPI, vol. 13(23), pages 1-24, November.
    8. Moritz, Jana & McPartlin, Maria & Tuomisto, Hanna L. & Ryynänen, Toni, 2023. "A multi-level perspective of potential transition pathways towards cultured meat: Finnish and German political stakeholder perceptions," Research Policy, Elsevier, vol. 52(9).
    9. Ingunn Y. Gudbrandsdottir & Nína M. Saviolidis & Gudrun Olafsdottir & Gudmundur V. Oddsson & Hlynur Stefansson & Sigurdur G. Bogason, 2021. "Transition Pathways for the Farmed Salmon Value Chain: Industry Perspectives and Sustainability Implications," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    10. Mura, Matteo & Longo, Mariolina & Toschi, Laura & Zanni, Sara & Visani, Franco & Bianconcini, Silvia, 2021. "The role of geographical scales in sustainability transitions: An empirical investigation of the European industrial context," Ecological Economics, Elsevier, vol. 183(C).
    11. Varvara Nikulina & David Simon & Henrik Ny & Henrikke Baumann, 2019. "Context-Adapted Urban Planning for Rapid Transitioning of Personal Mobility towards Sustainability: A Systematic Literature Review," Sustainability, MDPI, vol. 11(4), pages 1-37, February.
    12. Satya Widya Yudha & Benny Tjahjono & Philip Longhurst, 2022. "Sustainable Transition from Fossil Fuel to Geothermal Energy: A Multi-Level Perspective Approach," Energies, MDPI, vol. 15(19), pages 1-22, October.
    13. Marc Schabka & Aurelia Kammerhofer & Valerie Batiajew & Maria Juschten, 2022. "Driving Forces and Barriers for the Implementation of Mobility Services in Austria—A Practitioner Perspective," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    14. Krigsholm, Pauliina & Riekkinen, Kirsikka & Ståhle, Pirjo, 2020. "Pathways for a future cadastral system: A socio-technical approach," Land Use Policy, Elsevier, vol. 94(C).
    15. Oliver Krätzig & Valeria Franzkowiak & Nathalie Sick, 2019. "Multi-Level Perspective To Facilitate Sustainable Transitions — A Pathway For German Oems Towards Electric Vehicles," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(08), pages 1-20, December.
    16. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    17. Edler, Jakob & Köhler, Jonathan Hugh & Wydra, Sven & Salas-Gironés, Edgar & Schiller, Katharina & Braun, Annette, 2021. "Dimensions of systems and transformations: Towards an integrated framework for system transformations," Working Papers "Sustainability and Innovation" S03/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    18. Chakwizira, James, 2022. "Stretching resilience and adaptive transport systems capacity in South Africa: Imperfect or perfect attempts at closing COVID -19 policy and planning emergent gaps," Transport Policy, Elsevier, vol. 125(C), pages 127-150.
    19. Lisa Graaf & Stefan Werland & Oliver Lah & Emilie Martin & Alvin Mejia & María Rosa Muñoz Barriga & Hien Thi Thu Nguyen & Edmund Teko & Shritu Shrestha, 2021. "The Other Side of the (Policy) Coin: Analyzing Exnovation Policies for the Urban Mobility Transition in Eight Cities around the Globe," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    20. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13611-:d:948750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.