IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v172y2021ics004016252100439x.html
   My bibliography  Save this article

A socio-technical transition path for new energy vehicles in China: A multi-level perspective

Author

Listed:
  • Wu, Zhanglan
  • Shao, Qinglong
  • Su, Yantao
  • Zhang, Dan

Abstract

The transport sector is a key emitter of greenhouse gasses. We applied socio-technical transition theory and the multi-level perspective (MLP) approach to depict the interplay of three MLP layers (niche, regime, and landscape) and to project future paths for the transition from traditional (fossil fuel) vehicles to new energy vehicles (NEVs) in China. Specifically, the exogenous context nurtures nascent innovations and restrains the development of traditional fuel vehicles; however, the socio-technical system of NEVs is still in the primary stage and cannot meet the needs of consumers. Under double pressures, the socio-technical system of traditional vehicles is generally stable, but there are factors that impinge on this stability. Four phases are identified according to national plans: the initial pre-development phase (2001–2011) protects nascent innovations; core technologies are developed and market share is expanded in the take-off phase (2012–2020); the acceleration phase (2021–2035) strengthens the trend by encouraging key technological breakthroughs, infrastructure construction, and international cooperation; and the last sprint phase (2036–) further develops the low-carbon transition in China's automobile industry. We also illustrate the essential role of government in the Chinese context. Policy implications related to electric power, technological innovation, and industrial coordination are discussed.

Suggested Citation

  • Wu, Zhanglan & Shao, Qinglong & Su, Yantao & Zhang, Dan, 2021. "A socio-technical transition path for new energy vehicles in China: A multi-level perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:tefoso:v:172:y:2021:i:c:s004016252100439x
    DOI: 10.1016/j.techfore.2021.121007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016252100439X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heffernan, Gail M, 2003. "Path Dependence, Behavioral Rules, and the Role of Entrepreneurship in Economic Change: The Case of the Automobile Industry," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 16(1), pages 45-62, March.
    2. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    3. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    4. Smith, Adrian & Stirling, Andy & Berkhout, Frans, 2005. "The governance of sustainable socio-technical transitions," Research Policy, Elsevier, vol. 34(10), pages 1491-1510, December.
    5. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    6. Yu, Feifei & Wang, Liting & Li, Xiaotong, 2020. "The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation," Energy Policy, Elsevier, vol. 141(C).
    7. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    8. Lepoutre, Jan & Oguntoye, Augustina, 2018. "The (non-)emergence of mobile money systems in Sub-Saharan Africa: A comparative multilevel perspective of Kenya and Nigeria," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 262-275.
    9. Roberts, Cameron & Geels, Frank W., 2019. "Conditions for politically accelerated transitions: Historical institutionalism, the multi-level perspective, and two historical case studies in transport and agriculture," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 221-240.
    10. Zhang, Lei & Qin, Quande, 2018. "China’s new energy vehicle policies: Evolution, comparison and recommendation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 57-72.
    11. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.
    12. Geels, Frank W., 2006. "The hygienic transition from cesspools to sewer systems (1840-1930): The dynamics of regime transformation," Research Policy, Elsevier, vol. 35(7), pages 1069-1082, September.
    13. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    14. Zhang, Hao & Cai, Guixin, 2020. "Subsidy strategy on new-energy vehicle based on incomplete information: A Case in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    15. René Kemp & Jan Rotmans, 2009. "Transitioning policy: co-production of a new strategic framework for energy innovation policy in the Netherlands," Policy Sciences, Springer;Society of Policy Sciences, vol. 42(4), pages 303-322, November.
    16. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    17. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    18. Frank W. Geels, 2005. "Technological Transitions and System Innovations," Books, Edward Elgar Publishing, number 3576.
    19. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    20. Liu, Zongwei & Hao, Han & Cheng, Xiang & Zhao, Fuquan, 2018. "Critical issues of energy efficient and new energy vehicles development in China," Energy Policy, Elsevier, vol. 115(C), pages 92-97.
    21. Geels, Frank W., 2010. "Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective," Research Policy, Elsevier, vol. 39(4), pages 495-510, May.
    22. Köhler, Jonathan & Turnheim, Bruno & Hodson, Mike, 2020. "Low carbon transitions pathways in mobility: Applying the MLP in a combined case study and simulation bridging analysis of passenger transport in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    23. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    24. Geels, Frank, 2005. "Co-evolution of technology and society: The transition in water supply and personal hygiene in the Netherlands (1850–1930)—a case study in multi-level perspective," Technology in Society, Elsevier, vol. 27(3), pages 363-397.
    25. Bohnsack, René, 2018. "Local niches and firm responses in sustainability transitions: The case of low-emission vehicles in China," Technovation, Elsevier, vol. 70, pages 20-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qin & Wen, Xiaonan & Cao, Qinwei, 2023. "Multi-objective development path evolution of new energy vehicle policy driven by big data: From the perspective of economic-ecological-social," Applied Energy, Elsevier, vol. 341(C).
    2. Medina-Molina, Cayetano & Pérez-Macías, Noemí & Fernández-Fernádez, José Luis, 2023. "The use of micromobility in different contexts. An explanation through the multilevel perspective and QCA," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    3. Münch, Christopher & Marx, Emanuel & Benz, Lukas & Hartmann, Evi & Matzner, Martin, 2022. "Capabilities of digital servitization: Evidence from the socio-technical systems theory," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    4. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    5. Xin Ma & Hong Jiang & Lijuan Tong & Jingyi Zhang & Mengyuan Dong, 2023. "Sustainability of the New Energy Automobile Industry: Examining the Relationship among Government Subsidies, R&D Intensity, and Innovation Performance," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    6. Wu, Zhonghuan & Duan, Chunlin & Cui, Yuting & Qin, Rong, 2023. "Consumers' attitudes toward low-carbon consumption based on a computational model: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    7. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    8. Yanbo Wang & Boyao Zhi & Shumin Xiang & Guangxin Ren & Yongzhong Feng & Gaihe Yang & Xiaojiao Wang, 2023. "China’s Biogas Industry’s Sustainable Transition to a Low-Carbon Plan—A Socio-Technical Perspective," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    9. Zhao, Yuntong & Jian, Zhaoquan & Du, Yushen, 2024. "How can China's subsidy promote the transition to electric vehicles?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Muhammad Habiburrahman & Rahmat Nurcahyo & Azanizawati Ma’aram & Kaoru Natsuda, 2024. "Driving the Transport Electrification: Exploring Stakeholders’ Perceptions and Actions in the Indonesian Automotive Industry Transition to Electric Mobility," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    11. Tian Liang & Hongying Mao & Yujiao Tan & Bing Sun, 2023. "How Does Socio-technical Landscape Affect the Formation of Technical Standards?," SAGE Open, , vol. 13(4), pages 21582440231, December.
    12. Liang, Chao & Wang, Qi, 2023. "The relationship between total factor productivity and environmental quality: A sustainable future with innovation input," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    13. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    14. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2023. "Investigating the potential of low-carbon pathways for hydrocarbon-dependent rentier states: Sociotechnical transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    2. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    3. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Lachman, Daniël A., 2013. "A survey and review of approaches to study transitions," Energy Policy, Elsevier, vol. 58(C), pages 269-276.
    5. Fuenfschilling, Lea & Truffer, Bernhard, 2014. "The structuration of socio-technical regimes—Conceptual foundations from institutional theory," Research Policy, Elsevier, vol. 43(4), pages 772-791.
    6. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    7. Oliver Krätzig & Valeria Franzkowiak & Nathalie Sick, 2019. "Multi-Level Perspective To Facilitate Sustainable Transitions — A Pathway For German Oems Towards Electric Vehicles," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(08), pages 1-20, December.
    8. Sebastian Fastenrath & Boris Braun, 2018. "Lost in Transition? Directions for an Economic Geography of Urban Sustainability Transitions," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    9. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.
    10. Hirschhorn, Fabio & Paulsson, Alexander & Sørensen, Claus H. & Veeneman, Wijnand, 2019. "Public transport regimes and mobility as a service: Governance approaches in Amsterdam, Birmingham, and Helsinki," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 178-191.
    11. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    12. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    13. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    14. Hamid El Bilali, 2019. "The Multi-Level Perspective in Research on Sustainability Transitions in Agriculture and Food Systems: A Systematic Review," Agriculture, MDPI, vol. 9(4), pages 1-24, April.
    15. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    16. Jason Konefal, 2015. "Governing Sustainability Transitions: Multi-Stakeholder Initiatives and Regime Change in United States Agriculture," Sustainability, MDPI, vol. 7(1), pages 1-22, January.
    17. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
    18. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    19. Hassan Qudrat-Ullah & Mark McCarthy Akrofi & Aymen Kayal, 2020. "Analyzing Actors’ Engagement in Sustainable Energy Planning at the Local Level in Ghana: An Empirical Study," Energies, MDPI, vol. 13(8), pages 1-20, April.
    20. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:172:y:2021:i:c:s004016252100439x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.