IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921011442.html
   My bibliography  Save this article

Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology

Author

Listed:
  • Liu, Weipeng
  • Peng, Tao
  • Kishita, Yusuke
  • Umeda, Yasushi
  • Tang, Renzhong
  • Tang, Wangchujun
  • Hu, Luoke

Abstract

Driven by the target of carbon neutrality, the vehicle industry is striving to implement energy conservation and emission reduction (ECER). Aluminum (Al) alloy, which is an effective ECER solution, is the dominant lightweight material for vehicles. Nearly 60% of vehicle Al components are produced by die casting (DC), which can achieve a 30–50% weight reduction. However, Al DC is highly energy intensive and environmentally polluting. It is necessary to assess the life cycle ECER effects of vehicle Al die castings (DCs). However, the existing research weakly supports this assessment, particularly in the manufacturing stage. In addition, the effective implementation of ECER for Al DC is crucial but lacks attractive measures. To bridge these gaps, a system boundary is first defined, including three scenarios: high-pressure DC, high-vacuum DC, and semi-solid DC. A detailed process division and data description are introduced. Then, a thorough inventory analysis is conducted with an in-depth investigation and on-site data collection. Finally, a more representative and configurable inventory compared to existing studies and life cycle assessment databases is provided. It is revealed that the energy consumption in the manufacture of structural DCs is nearly 80% larger than that of box-type DCs. High-vacuum DC and semi-solid DC can reduce the total energy by 3.5% and 9.9%, respectively. Several targeted ECER measures are proposed with intensive analyses and surveys. In addition, the sensitivity of specific Al DCs to the developed inventory is discussed, as are the suggested measures considering energy generation.

Suggested Citation

  • Liu, Weipeng & Peng, Tao & Kishita, Yusuke & Umeda, Yasushi & Tang, Renzhong & Tang, Wangchujun & Hu, Luoke, 2021. "Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011442
    DOI: 10.1016/j.apenergy.2021.117814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lewis, Anne Marie & Kelly, Jarod C. & Keoleian, Gregory A., 2014. "Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles," Applied Energy, Elsevier, vol. 126(C), pages 13-20.
    2. Papetti, Alessandra & Menghi, Roberto & Di Domizio, Giulia & Germani, Michele & Marconi, Marco, 2019. "Resources value mapping: A method to assess the resource efficiency of manufacturing systems," Applied Energy, Elsevier, vol. 249(C), pages 326-342.
    3. Konstantinos Salonitis & Mark Jolly & Emanuele Pagone & Michail Papanikolaou, 2019. "Life-Cycle and Energy Assessment of Automotive Component Manufacturing: The Dilemma Between Aluminum and Cast Iron," Energies, MDPI, vol. 12(13), pages 1-23, July.
    4. Comello, Stephen & Glenk, Gunther & Reichelstein, Stefan, 2021. "Transitioning to clean energy transportation services: Life-cycle cost analysis for vehicle fleets," Applied Energy, Elsevier, vol. 285(C).
    5. Hao, Han & Geng, Yong & Hang, Wen, 2016. "GHG emissions from primary aluminum production in China: Regional disparity and policy implications," Applied Energy, Elsevier, vol. 166(C), pages 264-272.
    6. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    7. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    8. Giampieri, A. & Ling-Chin, J. & Ma, Z. & Smallbone, A. & Roskilly, A.P., 2020. "A review of the current automotive manufacturing practice from an energy perspective," Applied Energy, Elsevier, vol. 261(C).
    9. Tharumarajah, A., 2008. "Benchmarking aluminium die casting operations," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1185-1189.
    10. Burd, Joshua Thomas Jameson & Moore, Elizabeth A. & Ezzat, Hesham & Kirchain, Randolph & Roth, Richard, 2021. "Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions," Applied Energy, Elsevier, vol. 283(C).
    11. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    12. Neto, Belmira & Kroeze, Carolien & Hordijk, Leen & Costa, Carlos, 2009. "Inventory of pollution reduction options for an aluminium pressure die casting plant," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 309-320.
    13. Haraldsson, Joakim & Johansson, Maria T., 2018. "Review of measures for improved energy efficiency in production-related processes in the aluminium industry – From electrolysis to recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 525-548.
    14. Liu, Weipeng & Peng, Tao & Tang, Renzhong & Umeda, Yasushi & Hu, Luoke, 2020. "An Internet of Things-enabled model-based approach to improving the energy efficiency of aluminum die casting processes," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    3. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Liu, Haizhou & Chen, Yanping & Wang, Jin & Xu, Jun, 2023. "Big data-driven correlation analysis based on clustering for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 349(C).
    4. Liu, Weipeng & Zhao, Chunhui & Peng, Tao & Zhang, Zhongwei & Wan, Anping, 2023. "Simulation-assisted multi-process integrated optimization for greentelligent aluminum casting," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Weipeng & Zhao, Chunhui & Peng, Tao & Zhang, Zhongwei & Wan, Anping, 2023. "Simulation-assisted multi-process integrated optimization for greentelligent aluminum casting," Applied Energy, Elsevier, vol. 336(C).
    2. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    3. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    4. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    5. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    7. Ma, Shuaiyin & Zhang, Yingfeng & Lv, Jingxiang & Ge, Yuntian & Yang, Haidong & Li, Lin, 2020. "Big data driven predictive production planning for energy-intensive manufacturing industries," Energy, Elsevier, vol. 211(C).
    8. Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    9. He, Yan & Wu, Pengcheng & Li, Yufeng & Wang, Yulin & Tao, Fei & Wang, Yan, 2020. "A generic energy prediction model of machine tools using deep learning algorithms," Applied Energy, Elsevier, vol. 275(C).
    10. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Tian, Shuoshuo & Di, Yuezhong & Dai, Min & Chen, Weiqiang & Zhang, Qi, 2022. "Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain," Applied Energy, Elsevier, vol. 305(C).
    12. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    13. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    15. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    16. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    17. Che, Gelegen & Zhang, Yanyan & Tang, Lixin & Zhao, Shengnan, 2023. "A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants," Applied Energy, Elsevier, vol. 345(C).
    18. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    19. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    20. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.