IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v261y2020ics0306261919317611.html
   My bibliography  Save this article

A review of the current automotive manufacturing practice from an energy perspective

Author

Listed:
  • Giampieri, A.
  • Ling-Chin, J.
  • Ma, Z.
  • Smallbone, A.
  • Roskilly, A.P.

Abstract

The automotive industry is facing on-going challenges to improve the sustainability of its manufacturing processes and vehicle emissions due to economic, environmental, marketability and policy concerns. This review aims to evaluate steps that could be taken by automotive manufacturers to further reduce energy consumed during manufacturing processes, particularly focusing on thermal management of low-temperature heat sources that are extensively present in the whole plant and in the paint shop. Through an extensive literature review on the subject, this article presents vehicle production processes, the past and future drivers, and strategies towards sustainability. Firstly, the whole vehicle manufacturing process is explained focusing on the energy sources and their use in the plant. Then, the paint shop is described as being responsible for the highest energy consumption in the production process, focusing on components, paints and energy utilisation. After presenting the practice performed by automotive manufacturers to reduce the energy consumption of their production process in terms of energy efficiency and thermal management, the article is closed by future steps that could be undertaken by the automotive industry towards the realisation of a low-carbon sector. It is concluded that unexploited potential for heat recovery in the paint shop is present in the low-temperature range and this waste heat could be effectively exploited by liquid desiccant technology for energy consumption reduction and could increase paint quality of the painting process due to more efficient moisture control.

Suggested Citation

  • Giampieri, A. & Ling-Chin, J. & Ma, Z. & Smallbone, A. & Roskilly, A.P., 2020. "A review of the current automotive manufacturing practice from an energy perspective," Applied Energy, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919317611
    DOI: 10.1016/j.apenergy.2019.114074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    2. Seog-Chan Oh & Alfred J. Hildreth, 2014. "Estimating the Technical Improvement of Energy Efficiency in the Automotive Industry—Stochastic and Deterministic Frontier Benchmarking Approaches," Energies, MDPI, vol. 7(9), pages 1-27, September.
    3. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    4. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    5. Geoffrey J. Roelant & Amber J. Kemppainen & David R. Shonnard, 2004. "Assessment of the Automobile Assembly Paint Process for Energy, Environmental, and Economic Improvement," Journal of Industrial Ecology, Yale University, vol. 8(1‐2), pages 173-191, January.
    6. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Philipp Geyer & Muhannad Delwati & Martin Buchholz & Alessandro Giampieri & Andrew Smallbone & Anthony P. Roskilly & Reiner Buchholz & Mathieu Provost, 2018. "Use Cases with Economics and Simulation for Thermo-Chemical District Networks," Sustainability, MDPI, vol. 10(3), pages 1-33, February.
    8. Magnus Hedlund & Johan Lundin & Juan De Santiago & Johan Abrahamsson & Hans Bernhoff, 2015. "Flywheel Energy Storage for Automotive Applications," Energies, MDPI, vol. 8(10), pages 1-28, September.
    9. Mayyas, Ahmad & Qattawi, Ala & Omar, Mohammed & Shan, Dongri, 2012. "Design for sustainability in automotive industry: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1845-1862.
    10. Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
    11. Caroline Rodrigues Vaz & Tania Regina Shoeninger Rauen & Álvaro Guillermo Rojas Lezana, 2017. "Sustainability and Innovation in the Automotive Sector: A Structured Content Analysis," Sustainability, MDPI, vol. 9(6), pages 1-23, May.
    12. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    13. Mohammad Omar & Ahmad Mayyas, 2020. "Eco-Material Selection for Lightweight Vehicle Design," Chapters, in: Manuel J. Hermoso-Orzaez & Alfonso Gago-Calderon (ed.), Energy Efficiency and Sustainable Lighting - a Bet for the Future, IntechOpen.
    14. Boyd, Gale A., 2014. "Estimating the changes in the distribution of energy efficiency in the U.S. automobile assembly industry," Energy Economics, Elsevier, vol. 42(C), pages 81-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
    2. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.
    3. Sindu Daniarta & Piotr Kolasiński & Barbara Rogosz, 2022. "Waste Heat Recovery in Automotive Paint Shop via Organic Rankine Cycle and Thermal Energy Storage System—Selected Thermodynamic Issues," Energies, MDPI, vol. 15(6), pages 1-18, March.
    4. He, Yan & Wu, Pengcheng & Li, Yufeng & Wang, Yulin & Tao, Fei & Wang, Yan, 2020. "A generic energy prediction model of machine tools using deep learning algorithms," Applied Energy, Elsevier, vol. 275(C).
    5. Ekaterina Abramushkina & Assel Zhaksylyk & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "A Thorough Review of Cooling Concepts and Thermal Management Techniques for Automotive WBG Inverters: Topology, Technology and Integration Level," Energies, MDPI, vol. 14(16), pages 1-21, August.
    6. Edi Lukin & Aleksandra Krajnović & Jurica Bosna, 2022. "Sustainability Strategies and Achieving SDGs: A Comparative Analysis of Leading Companies in the Automotive Industry," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    7. Zhaohui Feng & Xinru Ding & Hua Zhang & Ying Liu & Wei Yan & Xiaoli Jiang, 2023. "An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards," Energies, MDPI, vol. 16(20), pages 1-18, October.
    8. Meihang Zhang & Hua Zhang & Wei Yan & Zhigang Jiang & Shuo Zhu, 2023. "An Integrated Deep-Learning-Based Approach for Energy Consumption Prediction of Machining Systems," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    9. Francesco Pelella & Luca Viscito & Federico Magnea & Alessandro Zanella & Stanislao Patalano & Alfonso William Mauro & Nicola Bianco, 2023. "Comparison between Physics-Based Approaches and Neural Networks for the Energy Consumption Optimization of an Automotive Production Industrial Process," Energies, MDPI, vol. 16(19), pages 1-22, September.
    10. Rajesh Mehta & Milad Golkaram & Jack T. W. E. Vogels & Tom Ligthart & Eugene Someren & Spela Ferjan & Jelmer Lennartz, 2023. "BEVSIM: Battery electric vehicle sustainability impact assessment model," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1266-1276, October.
    11. Mohammad Harris, 2021. "An Investigation on Engine Mass Airflow Sensor Production via TQM, TPM, and Six Sigma Practices," SN Operations Research Forum, Springer, vol. 2(4), pages 1-23, December.
    12. Walden, Jasper V.M. & Wellig, Beat & Stathopoulos, Panagiotis, 2023. "Heat pump integration in non-continuous industrial processes by Dynamic Pinch Analysis Targeting," Applied Energy, Elsevier, vol. 352(C).
    13. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    14. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    15. Xin Ma & Hong Jiang & Lijuan Tong & Jingyi Zhang & Mengyuan Dong, 2023. "Sustainability of the New Energy Automobile Industry: Examining the Relationship among Government Subsidies, R&D Intensity, and Innovation Performance," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    16. Liu, Weipeng & Peng, Tao & Kishita, Yusuke & Umeda, Yasushi & Tang, Renzhong & Tang, Wangchujun & Hu, Luoke, 2021. "Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology," Applied Energy, Elsevier, vol. 304(C).
    17. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    18. Albert, Max D.A. & Bennett, Katherine O. & Adams, Charlotte A. & Gluyas, Jon G., 2022. "Waste heat mapping: A UK study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    2. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    3. Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
    4. Giampieri, Alessandro & Ma, Zhiwei & Ling Chin, Janie & Smallbone, Andrew & Lyons, Padraig & Khan, Imad & Hemphill, Stephen & Roskilly, Anthony Paul, 2019. "Techno-economic analysis of the thermal energy saving options for high-voltage direct current interconnectors," Applied Energy, Elsevier, vol. 247(C), pages 60-77.
    5. Wen, Xuanhao & Cao, Huajun & Li, Hongcheng & Zheng, Jie & Ge, Weiwei & Chen, Erheng & Gao, Xi & Hon, Bernard, 2022. "A dual energy benchmarking methodology for energy-efficient production planning and operation of discrete manufacturing systems using data mining techniques," Energy, Elsevier, vol. 255(C).
    6. Giampieri, A. & Roy, S. & Shivaprasad, K.V. & Smallbone, A.J. & Roskilly, A.P., 2022. "An integrated smart thermo-chemical energy network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Seog-Chan Oh & Jaemin Shin, 2021. "The Assessment of Car Making Plants with an Integrated Stochastic Frontier Analysis Model," Mathematics, MDPI, vol. 9(11), pages 1-21, June.
    8. Ven-Shing Wang & Cheng-Fong Sie & Ta-Yuan Chang & Keh-Ping Chao, 2016. "The Evaluation of Energy Conservation Performance on Electricity: A Case Study of the TFT-LCD Optronics Industry," Energies, MDPI, vol. 9(3), pages 1-12, March.
    9. Van Vang Le & Lan Huong Nguyen, 2019. "Design And Fabrication Of Distillation Equipment Of Fresh Water From The Seawater By The Use Of The Waste Heat From Diesel Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 79-83, March.
    10. Xuan Phuong Nguyen, 2019. "The Bus Transportation Issue And People Satisfaction With Public Transport In Ho Chi Minh City ," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 10-16, January.
    11. repec:zib:zjmerd:4jmerd2018-116-121 is not listed on IDEAS
    12. Vittorini, Diego & Cipollone, Roberto, 2016. "Energy saving potential in existing industrial compressors," Energy, Elsevier, vol. 102(C), pages 502-515.
    13. Cao, Jian & Lu, Bo & Chen, Yangyang & Zhang, Xuemei & Zhai, Guangshu & Zhou, Gengui & Jiang, Boxin & Schnoor, Jerald L., 2016. "Extended producer responsibility system in China improves e-waste recycling: Government policies, enterprise, and public awareness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 882-894.
    14. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    15. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    16. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Rahman, Ataur & Razzak, Fadhilah & Afroz, Rafia & AKM, Mohiuddin & Hawlader, MNA, 2015. "Power generation from waste of IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 382-395.
    18. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    19. Menaz Ahamed & Apostolos Pesyridis & Jabraeil Ahbabi Saray & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Srithar Rajoo, 2023. "Comparative Assessment of sCO2 Cycles, Optimal ORC, and Thermoelectric Generators for Exhaust Waste Heat Recovery Applications from Heavy-Duty Diesel Engines," Energies, MDPI, vol. 16(11), pages 1-21, May.
    20. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    21. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919317611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.