IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v200y2024ics1364032124003320.html
   My bibliography  Save this article

Exploring a decarbonization framework for a Swedish automotive paint shop

Author

Listed:
  • Andrei, Mariana
  • Rohdin, Patrik
  • Thollander, Patrik
  • Wallin, Johanna
  • Tångring, Magnus

Abstract

The automotive industry is the world's largest manufacturing activity, characterized by complex production processes and some energy-intense processes which use a significant quantity of raw materials. The production processes responsible for the highest energy end-use take place in the paint shop. Depending on the type of paint-shop processes, the energy use can account for up to 75 % of the plant's total energy end-use. This study aims to contribute to an enhanced understanding of the complexity of adopting decarbonization measures and to provide support for planning and decision-making in practice. By adopting a bottom-up perspective, a longitudinal case study was conducted on a state-of-the-art automotive paint-shop between November 2019 and March 2023. To achieve the study's aim, a bottom-up methodology was developed comprising several steps: i) analysis of decarbonization measures, ii) mapping of process energy use and CO2 emissions, and iii) economic analysis. The data-based methodology is flexible and can be applied in different automotive paint-shops. Main findings show that i) incremental energy efficiency measures have the fastest adoption level, with relatively high savings potential, and most of these are cost effective; ii) radical process innovation measures have a higher savings potential, but long-term adoption levels due to the radical innovations required in the supply chain, and the highly specialized knowledge needed in the pre-treatment process; and iii) the primary drivers for implementing the measures are to achieve the climate targets and establish a leading position in the sector, rather than focusing primarily on the cost-effectiveness of the measures.

Suggested Citation

  • Andrei, Mariana & Rohdin, Patrik & Thollander, Patrik & Wallin, Johanna & Tångring, Magnus, 2024. "Exploring a decarbonization framework for a Swedish automotive paint shop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124003320
    DOI: 10.1016/j.rser.2024.114606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124003320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javad Rezaeian & Irandokht Parviziomran & Iraj Mahdavi, 2018. "Increasing energy productivity in lean production system with energy oriented value-stream mapping," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 24(4), pages 495-506.
    2. Geoffrey G. Parker & Burcu Tan & Osman Kazan, 2019. "Electric Power Industry: Operational and Public Policy Challenges and Opportunities," Production and Operations Management, Production and Operations Management Society, vol. 28(11), pages 2738-2777, November.
    3. Andrei, Mariana & Thollander, Patrik & Sannö, Anna, 2022. "Knowledge demands for energy management in manufacturing industry - A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    5. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    6. Robert D. Dewar & Jane E. Dutton, 1986. "The Adoption of Radical and Incremental Innovations: An Empirical Analysis," Management Science, INFORMS, vol. 32(11), pages 1422-1433, November.
    7. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    8. Sovacool, Benjamin K., 2017. "Contestation, contingency, and justice in the Nordic low-carbon energy transition," Energy Policy, Elsevier, vol. 102(C), pages 569-582.
    9. Caroline Rodrigues Vaz & Tania Regina Shoeninger Rauen & Álvaro Guillermo Rojas Lezana, 2017. "Sustainability and Innovation in the Automotive Sector: A Structured Content Analysis," Sustainability, MDPI, vol. 9(6), pages 1-23, May.
    10. Hasanbeigi, Ali & Menke, Christoph & Therdyothin, Apichit, 2010. "The use of conservation supply curves in energy policy and economic analysis: The case study of Thai cement industry," Energy Policy, Elsevier, vol. 38(1), pages 392-405, January.
    11. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    12. Peter J. Loftus & Armond M. Cohen & Jane C. S. Long & Jesse D. Jenkins, 2015. "A critical review of global decarbonization scenarios: what do they tell us about feasibility?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 93-112, January.
    13. Albert V. Norström & Christopher Cvitanovic & Marie F. Löf & Simon West & Carina Wyborn & Patricia Balvanera & Angela T. Bednarek & Elena M. Bennett & Reinette Biggs & Ariane Bremond & Bruce M. Campbe, 2020. "Principles for knowledge co-production in sustainability research," Nature Sustainability, Nature, vol. 3(3), pages 182-190, March.
    14. Giampieri, A. & Ling-Chin, J. & Ma, Z. & Smallbone, A. & Roskilly, A.P., 2020. "A review of the current automotive manufacturing practice from an energy perspective," Applied Energy, Elsevier, vol. 261(C).
    15. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mura, Matteo & Longo, Mariolina & Toschi, Laura & Zanni, Sara & Visani, Franco & Bianconcini, Silvia, 2021. "The role of geographical scales in sustainability transitions: An empirical investigation of the European industrial context," Ecological Economics, Elsevier, vol. 183(C).
    2. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    3. Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
    4. Anna Kuokkanen & Mahir Yazar, 2018. "Cities in Sustainability Transitions: Comparing Helsinki and Istanbul," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    5. Geels, F.W. & McMeekin, A. & Pfluger, B., 2020. "Socio-technical scenarios as a methodological tool to explore social and political feasibility in low-carbon transitions: Bridging computer models and the multi-level perspective in UK electricity gen," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    6. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    7. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    8. Hof, Andries F. & van Vuuren, Detlef P. & Berkhout, Frans & Geels, Frank W., 2020. "Understanding transition pathways by bridging modelling, transition and practice-based studies: Editorial introduction to the special issue," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    11. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    12. Johnsson, Simon & Andersson, Elias & Thollander, Patrik & Karlsson, Magnus, 2019. "Energy savings and greenhouse gas mitigation potential in the Swedish wood industry," Energy, Elsevier, vol. 187(C).
    13. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    14. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    15. Davood Askarany & Malcolm Smith, 2008. "Diffusion of innovation and business size: a longitudinal study of PACIA," Managerial Auditing Journal, Emerald Group Publishing, vol. 23(9), pages 900-916, October.
    16. Li, Xu & Vermeulen, Freek, 2021. "High risk, low return (and vice versa): the effect of product innovation on firm performance in a transition economy," LSE Research Online Documents on Economics 120268, London School of Economics and Political Science, LSE Library.
    17. Hirt, Léon F. & Sahakian, Marlyne & Trutnevyte, Evelina, 2022. "What subnational imaginaries for solar PV? The case of the Swiss energy transition," Technology in Society, Elsevier, vol. 71(C).
    18. Muhammad Shahbaz & Vassilios G. Papavassiliou & Amine Lahiani & David Roubaud, 2023. "Are we moving towards decarbonisation of the global economy? Lessons from the distant past to the present," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2620-2634, July.
    19. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    20. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124003320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.