IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v71y2022ics0160791x22002093.html
   My bibliography  Save this article

What subnational imaginaries for solar PV? The case of the Swiss energy transition

Author

Listed:
  • Hirt, Léon F.
  • Sahakian, Marlyne
  • Trutnevyte, Evelina

Abstract

Growing attention is being paid to imaginaries of energy futures that originate from actors at subnational levels who engage directly with energy transitions, and how these imaginaries compare with national imaginaries. We focus on collectives (e.g., cooperatives, energy utilities or public administrations) that engage with solar PV in Switzerland, a technology that is seen as central to the future of the Swiss energy system. To uncover sociotechnical imaginaries, we undertook 21 semi-structured interviews, complemented with a media analysis to ascertain the degree of formation and stabilization of these imaginaries. A dominant imaginary exists at the national level, which is institutionally stabilized, manifested in the Swiss Energy Strategy 2050; and two emerging sub-imaginaries were uncovered, termed adaptive and transformative. The adaptive sub-imaginary, which shows early signs of stabilization, is based on adapting current structures of power and business models, and embracing more techno-economic approaches. The transformative sub-imaginary, in an early formation stage, encompasses broader societal transformations, towards challenging power structures as well as technological solutions. Engaging with the diversity of subnational imaginaries and their phases preceding institutional stability has clear policy implications, notably in providing insights into how national imaginaries are interpreted and reproduced, and how sub-imaginaries may gain momentum over time.

Suggested Citation

  • Hirt, Léon F. & Sahakian, Marlyne & Trutnevyte, Evelina, 2022. "What subnational imaginaries for solar PV? The case of the Swiss energy transition," Technology in Society, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:teinso:v:71:y:2022:i:c:s0160791x22002093
    DOI: 10.1016/j.techsoc.2022.102068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X22002093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2022.102068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carmen Bain & Sonja Lindberg & Theresa Selfa, 2020. "Emerging sociotechnical imaginaries for gene edited crops for foods in the United States: implications for governance," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(2), pages 265-279, June.
    2. Vivien, F.-D. & Nieddu, M. & Befort, N. & Debref, R. & Giampietro, M., 2019. "The Hijacking of the Bioeconomy," Ecological Economics, Elsevier, vol. 159(C), pages 189-197.
    3. Certomà, Chiara & Corsini, Filippo & Frey, Marco, 2020. "Hyperconnected, receptive and do-it-yourself city. An investigation into the European “imaginary” of crowdsourcing for urban governance," Technology in Society, Elsevier, vol. 61(C).
    4. Urhammer, Emil, 2017. "Celestial bodies and satellites – Energy issues, models, and imaginaries in Denmark since 1973," Ecological Economics, Elsevier, vol. 131(C), pages 425-433.
    5. Daniel Rosenbloom & Jochen Markard & Frank W. Geels & Lea Fuenfschilling, 2020. "Opinion: Why carbon pricing is not sufficient to mitigate climate change—and how “sustainability transition policy” can help," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(16), pages 8664-8668, April.
    6. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    7. Kuchler, Magdalena, 2014. "Sweet dreams (are made of cellulose): Sociotechnical imaginaries of second-generation bioenergy in the global debate," Ecological Economics, Elsevier, vol. 107(C), pages 431-437.
    8. Preston, Christopher J. & Wickson, Fern, 2016. "Broadening the lens for the governance of emerging technologies: Care ethics and agricultural biotechnology," Technology in Society, Elsevier, vol. 45(C), pages 48-57.
    9. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    10. Sneltvedt, Ole, 2018. "Experience the future in full-scale: Technological background relations and visions of the good society at the World's Columbian Exposition," Technology in Society, Elsevier, vol. 52(C), pages 46-53.
    11. Sahakian, Marlyne & Dobigny, Laure, 2019. "From governing behaviour to transformative change: A typology of household energy initiatives in Switzerland," Energy Policy, Elsevier, vol. 129(C), pages 1261-1270.
    12. Sovacool, Benjamin K. & Martiskainen, Mari & Hook, Andrew & Baker, Lucy, 2020. "Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe," Ecological Economics, Elsevier, vol. 169(C).
    13. Schaube, P. & Ise, A. & Clementi, L., 2022. "Distributed photovoltaic generation in Argentina: An analysis based on the technical innovation system framework," Technology in Society, Elsevier, vol. 68(C).
    14. Carvajal Bermúdez, Juan Carlos & König, Reinhard, 2021. "The role of technologies and citizen organizations in decentralized forms of participation. A case study about residential streets in Vienna," Technology in Society, Elsevier, vol. 66(C).
    15. Van Klyton, Aaron & Castaño-Muñoz, Wilson, 2017. "Local information services in Medellin: Technology, institutions, communities and power," Technology in Society, Elsevier, vol. 50(C), pages 20-30.
    16. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    17. Genovese, Taylor R., 2018. "“Death is a disease”: Cryopreservation, neoliberalism, and temporal commodification in the U.S," Technology in Society, Elsevier, vol. 54(C), pages 52-56.
    18. Arnaldi, Simone, 2014. "Exploring imaginative geographies of nanotechnologies in news media images of Italian nanoscientists," Technology in Society, Elsevier, vol. 37(C), pages 49-58.
    19. Üzelgün, Mehmet Ali & Pereira, João Rui, 2020. "Beyond the co-production of technology and society: The discursive treatment of technology with regard to near-term and long-term environmental goals," Technology in Society, Elsevier, vol. 61(C).
    20. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    21. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    22. Marc Jaxa-Rozen & Evelina Trutnevyte, 2021. "Sources of uncertainty in long-term global scenarios of solar photovoltaic technology," Nature Climate Change, Nature, vol. 11(3), pages 266-273, March.
    23. Jessica Jewell & Aleh Cherp, 2020. "On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 1.5°C?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(1), January.
    24. Robert Martin, 2021. "AV futures or futures with AVs? Bridging sociotechnical imaginaries and a multi-level perspective of autonomous vehicle visualisations in praxis," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    25. Lempiälä, Tea & Apajalahti, Eeva-Lotta & Haukkala, Teresa & Lovio, Raimo, 2019. "Socio-cultural framing during the emergence of a technological field: Creating cultural resonance for solar technology," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miqdam T. Chaichan & Hussein A. Kazem & Moafaq K. S. Al-Ghezi & Ali H. A. Al-Waeli & Ali J. Ali & Kamaruzzaman Sopian & Abdul Amir H. Kadhum & Wan Nor Roslam Wan Isahak & Mohd S. Takriff & Ahmed A. Al, 2023. "Effect of Different Preparation Parameters on the Stability and Thermal Conductivity of MWCNT-Based Nanofluid Used for Photovoltaic/Thermal Cooling," Sustainability, MDPI, vol. 15(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    2. Hof, Andries F. & Carrara, Samuel & De Cian, Enrica & Pfluger, Benjamin & van Sluisveld, Mariësse A.E. & de Boer, Harmen Sytze & van Vuuren, Detlef P., 2020. "From global to national scenarios: Bridging different models to explore power generation decarbonisation based on insights from socio-technical transition case studies," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    3. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    4. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. André Sorensen & Anna-Katharina Brenner, 2021. "Cities, Urban Property Systems, and Sustainability Transitions: Contested Processes of Institutional Change and the Regulation of Urban Property Development," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    6. Jain, Sanjay, 2020. "Fumbling to the future? Socio-technical regime change in the recorded music industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    7. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    8. Fjalar J. De Haan & Briony C. Rogers, 2019. "The Multi-Pattern Approach for Systematic Analysis of Transition Pathways," Sustainability, MDPI, vol. 11(2), pages 1-30, January.
    9. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    10. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    11. María Elena López Reyes & Willem A. Zwagers & Ingrid J. Mulder, 2020. "Considering the Human-Dimension to Make Sustainable Transitions Actionable," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    12. Vögele, Stefan & Poganietz, Witold-Roger & Kleinebrahm, Max & Weimer-Jehle, Wolfgang & Bernhard, Jesse & Kuckshinrichs, Wilhelm & Weiss, Annika, 2022. "Dissemination of PV-Battery systems in the German residential sector up to 2050: Technological diffusion from multidisciplinary perspectives," Energy, Elsevier, vol. 248(C).
    13. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "Assessing transitions through socio-technical network analysis – a methodological framework and a case study from the water sector," Papers in Evolutionary Economic Geography (PEEG) 2035, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    14. Fuenfschilling, Lea & Binz, Christian, 2018. "Global socio-technical regimes," Research Policy, Elsevier, vol. 47(4), pages 735-749.
    15. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    16. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    17. Wise, Emily & Arnold, Erik, 2022. "Evaluating Transformation – what can we learn from the literature?," Papers in Innovation Studies 2022/10, Lund University, CIRCLE - Centre for Innovation Research.
    18. Defeuilley, Christophe, 2019. "Energy transition and the future(s) of the electricity sector," Utilities Policy, Elsevier, vol. 57(C), pages 97-105.
    19. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    20. Judson, E. & Fitch-Roy, O. & Pownall, T. & Bray, R. & Poulter, H. & Soutar, I. & Lowes, R. & Connor, P.M. & Britton, J. & Woodman, B. & Mitchell, C., 2020. "The centre cannot (always) hold: Examining pathways towards energy system de-centralisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:71:y:2022:i:c:s0160791x22002093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.