IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i3d10.1038_s41558-021-00998-8.html
   My bibliography  Save this article

Sources of uncertainty in long-term global scenarios of solar photovoltaic technology

Author

Listed:
  • Marc Jaxa-Rozen

    (University of Geneva)

  • Evelina Trutnevyte

    (University of Geneva)

Abstract

The deployment of solar photovoltaic (PV) technology has consistently outpaced expectations over the past decade. However, long-term prospects for PV remain deeply uncertain, as recent global scenarios span two orders of magnitude in installed PV capacity by 2050. Here we systematically compile an ensemble of 1,550 scenarios from peer-reviewed and influential grey literature, including IPCC and non-IPCC scenarios, and apply a statistical learning framework to link scenario characteristics with foreseen PV outcomes. We show that a large portion of the uncertainty in the global scenarios is associated with general features such as the type of organization, energy model and policy assumptions, without referring to specific techno-economic assumptions. IPCC scenarios consistently project lower PV adoption pathways and higher capital costs than non-IPCC scenarios. We thus recommend increasing the diversity of models and scenario methods included in IPCC assessments to represent the multiple perspectives present in the PV scenario literature.

Suggested Citation

  • Marc Jaxa-Rozen & Evelina Trutnevyte, 2021. "Sources of uncertainty in long-term global scenarios of solar photovoltaic technology," Nature Climate Change, Nature, vol. 11(3), pages 266-273, March.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-021-00998-8
    DOI: 10.1038/s41558-021-00998-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-00998-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-00998-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirt, Léon F. & Sahakian, Marlyne & Trutnevyte, Evelina, 2022. "What subnational imaginaries for solar PV? The case of the Swiss energy transition," Technology in Society, Elsevier, vol. 71(C).
    2. Pei-Hao Li & Steve Pye & Ilkka Keppo & Marc Jaxa-Rozen & Evelina Trutnevyte, 2023. "Revealing effective regional decarbonisation measures to limit global temperature increase in uncertain transition scenarios with machine learning techniques," Climatic Change, Springer, vol. 176(7), pages 1-23, July.
    3. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    6. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    7. Chambers, Jonathan & Zuberi, M.J.S. & Streicher, K.N. & Patel, Martin K., 2021. "Geospatial global sensitivity analysis of a heat energy service decarbonisation model of the building stock," Applied Energy, Elsevier, vol. 302(C).
    8. Oyewo, Ayobami S. & Aghahosseini, Arman & Movsessian, Maria M. & Breyer, Christian, 2024. "A novel geothermal-PV led energy system analysis on the case of the central American countries Guatemala, Honduras, and Costa Rica," Renewable Energy, Elsevier, vol. 221(C).
    9. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    11. Heinisch, Verena & Dujardin, Jérôme & Gabrielli, Paolo & Jain, Pranjal & Lehning, Michael & Sansavini, Giovanni & Sasse, Jan-Philipp & Schaffner, Christian & Schwarz, Marius & Trutnevyte, Evelina, 2023. "Inter-comparison of spatial models for high shares of renewable electricity in Switzerland," Applied Energy, Elsevier, vol. 350(C).
    12. Bretschger, Lucas, 2024. "Energy transition and climate change abatement: A macroeconomic analysis," Resource and Energy Economics, Elsevier, vol. 76(C).
    13. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    15. Lonergan, Katherine Emma & Sansavini, Giovanni, 2022. "Business structure of electricity distribution system operator and effect on solar photovoltaic uptake: An empirical case study for Switzerland," Energy Policy, Elsevier, vol. 160(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-021-00998-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.