IDEAS home Printed from https://ideas.repec.org/r/taf/ecsysr/v10y1998i4p307-324.html
   My bibliography  Save this item

Structural Decomposition Techniques: Sense and Sensitivity

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mattila, Tuomas & Koskela, Sirkka & Seppälä, Jyri & Mäenpää, Ilmo, 2013. "Sensitivity analysis of environmentally extended input–output models as a tool for building scenarios of sustainable development," Ecological Economics, Elsevier, vol. 86(C), pages 148-155.
  2. Maria Llop, 2019. "Decomposing the Changes in Water Intensity in a Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3057-3069, July.
  3. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
  4. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
  5. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
  6. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
  7. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
  8. Roland Lantner & Didier Lebert, 2013. "Dominance, dependence and interdependence in linear structures. A theoretical model and an application to the international trade flows," Post-Print halshs-00825477, HAL.
  9. Edens, Bram & Delahaye, Roel & van Rossum, Maarten & Schenau, Sjoerd, 2011. "Analysis of changes in Dutch emission trade balance(s) between 1996 and 2007," Ecological Economics, Elsevier, vol. 70(12), pages 2334-2340.
  10. Jesper Stage, 2002. "Structural Shifts In Namibian Energy Use: An Input‐Output Approach," South African Journal of Economics, Economic Society of South Africa, vol. 70(6), pages 1103-1125, September.
  11. Overman, Henry G. & Puga, Diego & Turner, Matthew A., 2008. "Decomposing the growth in residential land in the United States," Regional Science and Urban Economics, Elsevier, vol. 38(5), pages 487-497, September.
  12. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
  13. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The water footprint of the Spanish agricultural sector: 1860–2010," Ecological Economics, Elsevier, vol. 108(C), pages 200-207.
  14. J.M. Albala-Bertrand, 2016. "Structural change in industrial output: China 1995-2010," Journal of Chinese Economic and Foreign Trade Studies, Emerald Group Publishing, vol. 9(2), pages 146-170, June.
  15. Arne J. Nagengast & Robert Stehrer, 2016. "The Great Collapse in Value Added Trade," Review of International Economics, Wiley Blackwell, vol. 24(2), pages 392-421, May.
  16. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
  17. André Carrascal Incera, 2017. "Drivers of change in the European youth employment: a comparative structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 29(4), pages 463-485, October.
  18. Savona, Maria & Ciarli, Tommaso, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," Ecological Economics, Elsevier, vol. 159(C), pages 244-260.
  19. Arunima Malik & Jun Lan, 2016. "The role of outsourcing in driving global carbon emissions," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 168-182, June.
  20. Maenpaa, Ilmo & Siikavirta, Hanne, 2007. "Greenhouse gases embodied in the international trade and final consumption of Finland: An input-output analysis," Energy Policy, Elsevier, vol. 35(1), pages 128-143, January.
  21. Richard Wood, 2011. "Construction, Stability And Predictability Of An Input-Output Time-Series For Australia," Economic Systems Research, Taylor & Francis Journals, vol. 23(2), pages 175-211.
  22. Shigemi Kagawa & Hajime Inamura & Yuichi Moriguchi, 2002. "The Invisible Multipliers of Joint-products," Economic Systems Research, Taylor & Francis Journals, vol. 14(2), pages 185-203, June.
  23. Yang, Ling & Lahr, Michael L., 2010. "Sources of Chinese labor productivity growth: A structural decomposition analysis, 1987-2005," China Economic Review, Elsevier, vol. 21(4), pages 557-570, December.
  24. Yen-Yin Chen & Jung-Hua Wu, 2008. "Simple Keynesian input–output structural decomposition analysis using weighted Shapley value resolution," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(4), pages 879-892, December.
  25. Institut für Wirtschaftsforschung Halle (Ed.), 2012. "Neuere Anwendungsfelder der Input-Output-Analyse. Tagungsband: Beiträge zum Halleschen Input-Output-Workshop 2010," IWH-Sonderhefte 1/2012, Halle Institute for Economic Research (IWH).
  26. Neil Foster-McGregor & Bart Verspagen, 2017. "Decomposing Total Factor Productivity Growth in Manufacturing and Services," Asian Development Review, MIT Press, vol. 34(1), pages 88-115, March.
  27. Liu, H. & Polenske, K. R. & Guilhoto, J. J. M. & Xi, Y., 2011. "Direct and indirect energy consumption in China and the United States," MPRA Paper 37960, University Library of Munich, Germany.
  28. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
  29. Mary Gregory & Giovanni Russo, 2004. "The Employment Impact of Differences in Dmand and Production," DEMPATEM Working Papers wp10, AIAS, Amsterdam Institute for Advanced Labour Studies.
  30. Izaskun Barba & Belen Iraizoz, 2020. "Effect of the Great Crisis on Sectoral Female Employment in Europe: A Structural Decomposition Analysis," Economies, MDPI, Open Access Journal, vol. 8(3), pages 1-24, August.
  31. de Boer, P.M.C., 2008. "Energy decomposition analysis: the generalized Fisher index revisited," Econometric Institute Research Papers EI 2008-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  32. Alex R. Hoen & Machiel Mulder, 2003. "A decomposition analysis of the emission of CO2," ERSA conference papers ersa03p151, European Regional Science Association.
  33. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
  34. Kota Mori & Joe Chen & Yun Jeong Choi & Yasuyuki Sawada & Saki Sugano, 2012. "A note on the decomposition technique of economic indices," Economics Bulletin, AccessEcon, vol. 32(4), pages 2710-2715.
  35. Yiyi Zhang & Shengren Hou & Jiefeng Liu & Hanbo Zheng & Jiaqi Wang & Chaohai Zhang, 2020. "Evolution of Virtual Water Transfers in China’s Provincial Grids and Its Driving Analysis," Energies, MDPI, Open Access Journal, vol. 13(2), pages 1-19, January.
  36. Yu, Miao & Zhao, Xintong & Gao, Yuning, 2019. "Factor decomposition of China’s industrial electricity consumption using structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 67-76.
  37. Youguo Zhang, 2012. "Scale, Technique and Composition Effects in Trade-Related Carbon Emissions in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 371-389, March.
  38. Okushima, Shinichiro & Tamura, Makoto, 2007. "Multiple calibration decomposition analysis: Energy use and carbon dioxide emissions in the Japanese economy, 1970-1995," Energy Policy, Elsevier, vol. 35(10), pages 5156-5170, October.
  39. Ana-Isabel Guerra & Ferran Sancho, 2013. "A Linear Price Model With Extractions," EcoMod2013 5113, EcoMod.
  40. Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, Open Access Journal, vol. 11(16), pages 1-22, August.
  41. Fukao, Kyoji & Paul, Saumik, 2019. "Baumol versus Engel: Accounting for 100 years (1885-1985) of Structural Transformation in Japan," Discussion Paper Series 694, Institute of Economic Research, Hitotsubashi University.
  42. Jan Oosterhaven & Lourens Broersma, 2008. "Measuring revealed localisation economies," Letters in Spatial and Resource Sciences, Springer, vol. 1(1), pages 55-60, July.
  43. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
  44. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
  45. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
  46. Haddad, Eduardo A. & Hewings, Geoffrey J.D. & Porsse, Alexandre A. & Van Leeuwen, Eveline S. & Vieira, Renato S., 2015. "The underground economy: Tracking the higher-order economic impacts of the São Paulo Subway System," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 18-30.
  47. Caroline Hambÿe & Bart Hertveldt & Bernhard Michel, 2018. "Does consistency with detailed national data matter for calculating carbon footprints with global multi-regional input–output tables? A comparative analysis for Belgium based on a structural decomposi," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-22, December.
  48. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
  49. Fan, Maoqing & Zheng, Haitao, 2019. "The impact of factor price changes and technological progress on the energy intensity of China's industries: Kalman filter-based econometric method," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 340-353.
  50. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, Open Access Journal, vol. 7(6), pages 1-20, June.
  51. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, Open Access Journal, vol. 12(12), pages 1-23, June.
  52. Zhitao Li & Xiahui Wang & Jia Li & Wei Zhang & Ruiping Liu & Zhixiao Song & Guoxin Huang & Linglong Meng, 2019. "The Economic-Environmental Impacts of China’s Action Plan for Soil Pollution Control," Sustainability, MDPI, Open Access Journal, vol. 11(8), pages 1-12, April.
  53. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, Open Access Journal, vol. 10(9), pages 1-17, August.
  54. Jozef Kubala, 2016. "Impact of European Integration Process on Value Added Creation in Chosen Member Countries," GEMF Working Papers 2016-05, GEMF, Faculty of Economics, University of Coimbra.
  55. Edward Wolff, 2006. "The growth of information workers in the US economy, 1950-2000: the role of technological change, computerization, and structural change," Economic Systems Research, Taylor & Francis Journals, vol. 18(3), pages 221-255.
  56. Wang, Jie & Xiong, Yiling & Tian, Xin & Liu, Shangwei & Li, Jiashuo & Tanikawa, Hiroki, 2018. "Stagnating CO2 emissions with in-depth socioeconomic transition in Beijing," Applied Energy, Elsevier, vol. 228(C), pages 1714-1725.
  57. Alcántara, Vicent & Tarancón, Miguel-Angel & del Río, Pablo, 2013. "Assessing the technological responsibility of productive structures in electricity consumption," Energy Economics, Elsevier, vol. 40(C), pages 457-467.
  58. Fukao, Kyoji & Paul, Saumik, 2019. "Baumol versus Engel: Accounting for 100 years (1885-1985) of Structural Transformation in Japan," Discussion Paper Series 694, Institute of Economic Research, Hitotsubashi University.
  59. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
  60. Roland Lantner & Didier Lebert, 2013. "Dominance, dependence and interdependence in linear structures. A theoretical model and an application to the international trade flows," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00825477, HAL.
  61. Alex Hoen & Machiel Mulder, 2003. "Explaining Dutch emissions of CO2; a decomposition analysis," CPB Discussion Paper 24, CPB Netherlands Bureau for Economic Policy Analysis.
  62. Xu, Ming & Li, Ran & Crittenden, John C. & Chen, Yongsheng, 2011. "CO2 emissions embodied in China's exports from 2002 to 2008: A structural decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7381-7388.
  63. Yang Lianling & Yang Cuihong, 2017. "Changes in domestic value added in China’s exports: a structural decomposition analysis approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-12, December.
  64. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
  65. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
  66. Wood, Richard & Neuhoff, Karsten & Moran, Dan & Simas, Moana & Grubb, Michael & Stadler, Konstantin, 2020. "The structure, drivers and policy implications of the European carbon footprint," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 39-57.
  67. Strohmaier, R. & Rainer, A., 2016. "Studying general purpose technologies in a multi-sector framework: The case of ICT in Denmark," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 34-49.
  68. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
  69. Daniel Dujava, 2012. "Príčiny zaostávania nových členských krajín EÚ: empirická analýza na základe Montgomeryho dekompozície [Causes of Lagging Behind of New Member States of EU: Empirical Analysis by Montgomery Decompo," Politická ekonomie, Prague University of Economics and Business, vol. 2012(2), pages 222-244.
  70. Kazumi Hitomi & Yasuhide Okuyama & Geoffrey Hewings & Michael Sonis, 2000. "The Role of Interregional Trade in Generating Change in the Regional Economies of Japan, 1980-1990," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 515-537.
  71. Liu, Lan-Cui & Cheng, Lei & Zhao, Lu-Tao & Cao, Ying & Wang, Ce, 2020. "Investigating the significant variation of coal consumption in China in 2002-2017," Energy, Elsevier, vol. 207(C).
  72. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, Open Access Journal, vol. 9(4), pages 1-17, March.
  73. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
  74. Victoria Shestalova, 2001. "General Equilibrium Analysis of International TFP Growth Rates," Economic Systems Research, Taylor & Francis Journals, vol. 13(4), pages 391-404.
  75. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
  76. Weber, Christopher L., 2009. "Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002," Energy Policy, Elsevier, vol. 37(4), pages 1561-1570, April.
  77. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, Open Access Journal, vol. 11(12), pages 1-18, June.
  78. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
  79. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
  80. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
  81. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
  82. Marco Sakai & Anne Owen & John Barrett, 2017. "The UK’s Emissions and Employment Footprints: Exploring the Trade-Offs," Sustainability, MDPI, Open Access Journal, vol. 9(7), pages 1-19, July.
  83. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
  84. Cazcarro, Ignacio & Duarte, Rosa & Sánchez-Chóliz, Julio, 2013. "Economic growth and the evolution of water consumption in Spain: A structural decomposition analysis," Ecological Economics, Elsevier, vol. 96(C), pages 51-61.
  85. Paul De Boer, 2008. "Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 97-109.
  86. Maaike Bouwmeester & Jan Oosterhaven, 2013. "Specification and Aggregation Errors in Environmentally Extended Input–Output Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 307-335, November.
  87. Yunfeng, Yan & Laike, Yang, 2010. "China's foreign trade and climate change: A case study of CO2 emissions," Energy Policy, Elsevier, vol. 38(1), pages 350-356, January.
  88. Feng, Tian-tian & Yang, Yi-sheng & Xie, Shi-yan & Dong, Jun & Ding, Luo, 2017. "Economic drivers of greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 996-1006.
  89. Ten Raa, T. & Shestalova, V., 2006. "Alternative Measures of Total Factor Productivity Growth," Discussion Paper 2006-54, Tilburg University, Center for Economic Research.
  90. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
  91. Esteban Fernández & Bart Los & Carmen Carvajal, 2005. "Path Based Shift-Share Analysis -Using Additional Information in Decomposing Regional Economic Changes," ERSA conference papers ersa05p465, European Regional Science Association.
  92. Ferreira Neto, Amir B. & Perobelli, Fernando S. & Bastos, Suzana Q.A., 2014. "Comparing energy use structures: An input–output decomposition analysis of large economies," Energy Economics, Elsevier, vol. 43(C), pages 102-113.
  93. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
  94. Kirsten S. Wiebe, 2016. "The impact of renewable energy diffusion on European consumption-based emissions," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 133-150, June.
  95. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2014. "Drivers of greenhouse gas emissions in the Baltic States: A structural decomposition analysis," Ecological Economics, Elsevier, vol. 98(C), pages 22-28.
  96. Tarancon, Miguel Angel & del Rio, Pablo, 2007. "CO2 emissions and intersectoral linkages. The case of Spain," Energy Policy, Elsevier, vol. 35(2), pages 1100-1116, February.
  97. Stefan Pahl & Marcel P. Timmer, 2019. "Patterns of vertical specialisation in trade: long-run evidence for 91 countries," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 155(3), pages 459-486, August.
  98. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
  99. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
  100. Rosa Duarte & Vicente Pinilla & Ana Serrano, 2015. "Global water in a global world a long term study on agricultural virtual water flows in the world," Documentos de Trabajo dt2015-03, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
  101. Paola Rocchi & Monica Serrano, 2011. "Environmental Structural Decomposition Analysis of Italian Emissions, 1995-2005," Working Papers in Economics 267, Universitat de Barcelona. Espai de Recerca en Economia.
  102. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
  103. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
  104. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
  105. Tian, Xin & Chang, Miao & Lin, Chen & Tanikawa, Hiroki, 2014. "China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns," Applied Energy, Elsevier, vol. 123(C), pages 19-28.
  106. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
  107. Strohmaier, Rita & Rainer, Andreas, 2013. "On the Eonomic Purpose of General Purpose Technologies: A Combined Classical and Evolutionary Framework," MPRA Paper 45964, University Library of Munich, Germany.
  108. de Vries, Gaaitzen J. & Ferrarini, Benno, 2017. "What Accounts for the Growth of Carbon Dioxide Emissions in Advanced and Emerging Economies? The Role of Consumption, Technology and Global Supply Chain Participation," Ecological Economics, Elsevier, vol. 132(C), pages 213-223.
  109. Paul De Boer, 2009. "Multiplicative Decomposition And Index Number Theory: An Empirical Application Of The Sato-Vartia Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 21(2), pages 163-174.
  110. Zhang, Pingdan & Yuan, Haoming & Bai, Fuli & Tian, Xin & Shi, Feng, 2018. "How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 145-154.
  111. Okushima, Shinichiro & Tamura, Makoto, 2011. "Identifying the sources of energy use change: Multiple calibration decomposition analysis and structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 22(4), pages 313-326.
  112. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
  113. Leying Wu & Zheng Wang, 2017. "Examining drivers of the emissions embodied in trade," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
  114. Rohman, Ibrahim Kholilul & Bohlin, Erik, 2014. "Decomposition analysis of the telecommunications sector in Indonesia: What does the cellular era shed light on?," Telecommunications Policy, Elsevier, vol. 38(3), pages 248-263.
  115. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
  116. H. Wang & Chen Pan & P. Zhou, 2019. "Assessing the Role of Domestic Value Chains in China’s CO2 Emission Intensity: A Multi-Region Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 865-890, October.
  117. Meng, Bo & Chao, Qu, 2007. "Application of the Input-Output Decomposition Technique to China's Regional Economies," IDE Discussion Papers 102, Institute of Developing Economies, Japan External Trade Organization(JETRO).
  118. de Boer, Paul, 2009. "Generalized Fisher index or Siegel-Shapley decomposition?," Energy Economics, Elsevier, vol. 31(5), pages 810-814, September.
  119. Inácio Araúgo & Randall Jackson & Amir B. Ferreira Neto & Fernando Perobelli, 2018. "Environmental Costs of European Union Membership: A Structural Decomposition Analysis," Working Papers Working Paper 2018-04, Regional Research Institute, West Virginia University.
  120. Mukhopadhyay, Kakali & Forssell, Osmo, 2005. "An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973-1974 to 1996-1997," Ecological Economics, Elsevier, vol. 55(2), pages 235-250, November.
  121. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
  122. Yunfeng Yan & Laike Yang & Jan Priewe, 2011. "The Impact of China-EU Trade on Climate Change," Competence Centre on Money, Trade, Finance and Development 1102, Hochschule fuer Technik und Wirtschaft, Berlin.
  123. Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
  124. Arne J. Nagengast & Robert Stehrer, 2016. "Accounting for the Differences Between Gross and Value Added Trade Balances," The World Economy, Wiley Blackwell, vol. 39(9), pages 1276-1306, September.
  125. Eduardo Amaral Haddad & Natalia Cotarelli & Thiago Cavalcante Simonato & Vinicius Almeida Vale & Jaqueline Coelho Visentin, 2020. "The Grand Tour: Keynes and Goodwin go to Greece," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-21, December.
  126. Wu, Feng & Huang, Ningyu & Zhang, Qian & Qiao, Zhi & Zhan, Ni-ni, 2020. "Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach," Energy, Elsevier, vol. 190(C).
  127. Mazzanti, Massimiliano & Montini, Anna, 2010. "Embedding the drivers of emission efficiency at regional level -- Analyses of NAMEA data," Ecological Economics, Elsevier, vol. 69(12), pages 2457-2467, October.
  128. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
  129. Jan A van der Linden & Erik Dietzenbacher, 2000. "The Determinants of Structural Change in the European Union: A New Application of RAS," Environment and Planning A, , vol. 32(12), pages 2205-2229, December.
  130. Deng, Guangyao & Xu, Yan, 2017. "Accounting and structure decomposition analysis of embodied carbon trade: A global perspective," Energy, Elsevier, vol. 137(C), pages 140-151.
  131. Saari, M. Yusof & Dietzenbacher, Erik & Los, Bart, 2015. "Sources of Income Growth and Inequality Across Ethnic Groups in Malaysia, 1970–2000," World Development, Elsevier, vol. 76(C), pages 311-328.
  132. Oosterhaven, Jan, 2004. "On the definition of key sectors and the stability of net versus gross multipliers," Research Report 04C01, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  133. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
  134. Hong, Jae Pyo & Byun, Jeong Eun & Kim, Pang Ryong, 2016. "Structural changes and growth factors of the ICT industry in Korea: 1995–2009," Telecommunications Policy, Elsevier, vol. 40(5), pages 502-513.
  135. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
  136. Haddad, Eduardo & Hewings, Geoffrey & Porsse, Alexandre & Van Leeuwen, Eveline & Vieira, Renato, 2013. "The Underground Economy: Tracking the Wider Impacts of the São Paulo Subway System," TD NEREUS 8-2013, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).
  137. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
  138. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
  139. Xuemei Jiang & Huijuan Wang & Yan Xia, 0. "Economic structural change, renewable energy development, and carbon dioxide emissions in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 0, pages 1-18.
  140. K. Shironitta, 2016. "Global structural changes and their implication for territorial CO2 emissions," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-18, December.
  141. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, Open Access Journal, vol. 11(24), pages 1-18, December.
  142. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
  143. Chen Lin & Jing Li & Dezhi Li, 2014. "The Power Of Visible Hands: An Environmental Structural Decomposition Analysis Considering The People'S Daily Effect," Economic Systems Research, Taylor & Francis Journals, vol. 26(4), pages 431-443, December.
  144. Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
  145. Ryoko Morioka & Keisuke Nansai & Koji Tsuda, 2018. "Role of linkage structures in supply chain for managing greenhouse gas emissions," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-21, December.
  146. Ji, Ling & Liang, Sai & Qu, Shen & Zhang, Yanxia & Xu, Ming & Jia, Xiaoping & Jia, Yingtao & Niu, Dongxiao & Yuan, Jiahai & Hou, Yong & Wang, Haikun & Chiu, Anthony S.F. & Hu, Xiaojun, 2016. "Greenhouse gas emission factors of purchased electricity from interconnected grids," Applied Energy, Elsevier, vol. 184(C), pages 751-758.
  147. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
  148. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
  149. Michal Habrman, 2011. "Structural decomposition analysis of CO2 emissions in the Slovak economy," EAPG Working Paper Series 006, Department of Economic Policy, Faculty of National Economy, University of Economics in Bratislava.
  150. Magacho, Guilherme R. & McCombie, John S.L. & Guilhoto, Joaquim J.M., 2018. "Impacts of trade liberalization on countries’ sectoral structure of production and trade: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 70-77.
  151. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
  152. W. Koller & Robert Stehrer, 2008. "Outsourcing and Employment: A Decomposition Approach," FIW Research Reports series I-018, FIW.
  153. Bert Balk, 2003. "The Residual: On Monitoring and Benchmarking Firms, Industries, and Economies with Respect to Productivity," Journal of Productivity Analysis, Springer, vol. 20(1), pages 5-47, July.
  154. J., Pablo Muñoz & Hubacek, Klaus, 2008. "Material implication of Chile's economic growth: Combining material flow accounting (MFA) and structural decomposition analysis (SDA)," Ecological Economics, Elsevier, vol. 65(1), pages 136-144, March.
  155. Reijnders, Laurie S.M. & de Vries, Gaaitzen J., 2018. "Technology, offshoring and the rise of non-routine jobs," Journal of Development Economics, Elsevier, vol. 135(C), pages 412-432.
  156. Tarancon Moran, Miguel Angel & del Rio Gonzalez, Pablo, 2007. "A combined input-output and sensitivity analysis approach to analyse sector linkages and CO2 emissions," Energy Economics, Elsevier, vol. 29(3), pages 578-597, May.
  157. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
  158. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The effect of globalisation on water consumption: A case study of the Spanish virtual water trade, 1849–1935," Ecological Economics, Elsevier, vol. 100(C), pages 96-105.
  159. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
  160. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, Open Access Journal, vol. 9(1), pages 1-19, January.
  161. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
  162. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
  163. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
  164. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
  165. Persona, Helena Loiola & Oliveira, Maria Aparecida Silva, 2016. "Structural changes in Brazilian industry (1995-2009)," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), December.
  166. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
  167. Andrea BONFIGLIO, 2005. "Sector Potentiality and Sources of Growth. An Analysis of Structural Changes in Italy in the Nineties," Working Papers 237, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
  168. Rosa Duarte & Alfredo J. Mainar-Causapé & Julio Sánchez Chóliz, 2017. "Domestic GHG emissions and the responsibility of households in Spain: looking for regional differences," Applied Economics, Taylor & Francis Journals, vol. 49(53), pages 5397-5411, November.
  169. Petrick, Sebastian, 2013. "Carbon efficiency, technology, and the role of innovation patterns: Evidence from German plant-level microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy (IfW).
  170. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
  171. repec:elg:eechap:14395_18 is not listed on IDEAS
  172. Fukao, Kyoji & Paul, Saumik, 2019. "Baumol versus Engel: Accounting for 100 years (1885-1985) of Structural Transformation in Japan," IZA Discussion Papers 12727, Institute of Labor Economics (IZA).
  173. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
  174. repec:gam:jeners:v:9:y:2016:i:4:p:259:d:67071 is not listed on IDEAS
  175. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
  176. Jacob, J., 2004. "Late industrialisation and structural change: the Indonesian experience," Working Papers 04.18, Eindhoven Center for Innovation Studies.
  177. Michel, Bernhard, 2013. "Does offshoring contribute to reducing domestic air emissions? Evidence from Belgian manufacturing," Ecological Economics, Elsevier, vol. 95(C), pages 73-82.
  178. Wang, Fei & Dong, Baomin & Yin, Xiaopeng & An, Chi, 2014. "China's structural change: A new SDA model," Economic Modelling, Elsevier, vol. 43(C), pages 256-266.
  179. Zhang, Youguo, 2009. "Structural decomposition analysis of sources of decarbonizing economic development in China; 1992-2006," Ecological Economics, Elsevier, vol. 68(8-9), pages 2399-2405, June.
  180. Rosa Duarte & Cristina Sarasa & Mònia Serrano, 2018. "Structural change and female participation in recent economic growth: A multisectoral analysis for the Spanish economy," UB Economics Working Papers 2018/371, Universitat de Barcelona, Facultat d'Economia i Empresa, UB Economics.
  181. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, Open Access Journal, vol. 10(12), pages 1-25, November.
  182. Zhang, Youguo, 2010. "Supply-side structural effect on carbon emissions in China," Energy Economics, Elsevier, vol. 32(1), pages 186-193, January.
  183. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
  184. repec:gam:jeners:v:9:y:2016:i:1:p:23:d:61618 is not listed on IDEAS
  185. Shigemi Kagawa & Hajime Inamura, 2001. "A Structural Decomposition of Energy Consumption Based on a Hybrid Rectangular Input-Output Framework: Japan's Case," Economic Systems Research, Taylor & Francis Journals, vol. 13(4), pages 339-363.
  186. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
  187. Sanchez Choliz, Julio & Duarte, Rosa, 2006. "The effect of structural change on the self-reliance and interdependence of aggregate sectors: the case of Spain, 1980-1994," Structural Change and Economic Dynamics, Elsevier, vol. 17(1), pages 27-45, January.
  188. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
  189. Nadia Garbellini & Enrico Marelli & Ariel Luis Wirkierman, 2014. "Domestic demand and global production in the Eurozone: A multi-regional input-output assessment of the global crisis," International Review of Applied Economics, Taylor & Francis Journals, vol. 28(3), pages 336-364, May.
  190. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, Open Access Journal, vol. 12(19), pages 1-18, September.
  191. Hong, Jingke & Li, Clyde Zhengdao & Shen, Qiping & Xue, Fan & Sun, Bingxia & Zheng, Wei, 2017. "An Overview of the driving forces behind energy demand in China's construction industry: Evidence from 1990 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 85-94.
  192. Butnar, Isabela & Llop, Maria, 2011. "Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)," Ecological Economics, Elsevier, vol. 70(11), pages 2012-2019, September.
  193. Kulionis, Viktoras & Wood, Richard, 2020. "Explaining decoupling in high income countries: A structural decomposition analysis of the change in energy footprint from 1970 to 2009," Energy, Elsevier, vol. 194(C).
  194. Roland Lantner & Didier Lebert, 2013. "Dominance, dependence and interdependence in linear structures. A theoretical model and an application to the international trade flows," Documents de travail du Centre d'Economie de la Sorbonne 13043, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  195. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
  196. Magnus Jiborn & Viktoras Kulionis & Astrid Kander, 2020. "Consumption versus Technology: Drivers of Global Carbon Emissions 2000–2014," Energies, MDPI, Open Access Journal, vol. 13(2), pages 1-12, January.
  197. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
  198. Simón Accorsi & Ramón E. López & Gino Sturla, 2018. "Input-Output table and Carbon Footprint: Estimation and Structural Decomposition Analysis," Working Papers wp475, University of Chile, Department of Economics.
  199. Marco Percoco & Geoffrey Hewings & Lanfranco Senn, 2006. "Structural change decomposition through a global sensitivity analysis of input-output models," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 115-131.
  200. Uduak Akpan & Ovunda Green & Subhes Bhattacharyya & Salisu Isihak, 2015. "Effect of Technology Change on $$\hbox {CO}_{2}$$ CO 2 Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 165-189, June.
  201. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
  202. repec:eco:journ2:2017-04-31 is not listed on IDEAS
  203. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
  204. Ebru Voyvoda, 2009. "Sources of Structural Change and its Impact on Interdependence: An Input-Output Perspective for The Post-1980 Turkish Economy," Working Papers 507, Economic Research Forum, revised Dec 2009.
  205. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
  206. E. F. Baranov & D. I. Piontkovski & E. A. Staritsyna, 2019. "Methodological Problems of Using the Structural Decomposition Analysis in the Input-Output Model at the Present Stage," Studies on Russian Economic Development, Springer, vol. 30(2), pages 129-135, March.
  207. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.
  208. Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.
  209. Joe Chen & Yun Jeong Choi & Kohta Mori & Yasuyuki Sawada & Saki Sugano, 2009. "The Jump, Inertia, and Juvenization of Suicides in Japan," CIRJE F-Series CIRJE-F-628, CIRJE, Faculty of Economics, University of Tokyo.
  210. Tong Zhao & Zhijie Song & Tianjiao Li, 2018. "Effect of innovation capacity, production capacity and vertical specialization on innovation performance in China's electronic manufacturing: Analysis from the supply and demand sides," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
  211. Olga Gavrilova & Raivo Vilu, 2015. "Estonia's Energy-related Greenhouse Gas Emissions in 1995-2011: A Structural Decomposition Analysis," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 67-84, February.
  212. de Nooij, Michiel & van der Kruk, Rene & van Soest, Daan P., 2003. "International comparisons of domestic energy consumption," Energy Economics, Elsevier, vol. 25(4), pages 359-373, July.
  213. Koppány, Krisztián, 2017. "A növekedés lehetőségei és kockázatai. Magyarország feldolgozóipari exportteljesítményének és ágazati szerkezetének vizsgálata, 2010-2014 [Growth opportunities and risks in Hungary's industrial mix," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 17-53.
  214. Bertulfo, Donald Jay & Gentile, Elisabetta & de Vries , Gaaitzen J., 2019. "The Employment Effects of Technological Innovation, Consumption, and Participation in Global Value Chains: Evidence from Developing Asia," ADB Economics Working Paper Series 572, Asian Development Bank.
  215. Shigemi Kagawa & Hajime Inamura, 2004. "A Spatial Structural Decomposition Analysis of Chinese and Japanese Energy Demand: 1985-1990," Economic Systems Research, Taylor & Francis Journals, vol. 16(3), pages 279-299.
  216. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
  217. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
  218. Frank Vöhringer & Jean-Marie Grether & Nicole A. Mathys, 2013. "Trade and Climate Policies: Do Emissions from International Transport Matter?," The World Economy, Wiley Blackwell, vol. 36(3), pages 280-302, March.
  219. Kayoko Shironitta & Shunsuke Okamoto & Shigemi Kagawa, 2019. "Cross-country analysis of relationship between material input structures and consumption-based CO2 emissions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 533-554, October.
  220. Henrik Jacobsen, 2000. "Energy Demand, Structural Change and Trade: A Decomposition Analysis of the Danish Manufacturing Industry," Economic Systems Research, Taylor & Francis Journals, vol. 12(3), pages 319-343.
  221. Subash Dhar & Charles Marpaung, 2015. "Technology priorities for transport in Asia: assessment of economy-wide CO 2 emissions reduction for Lebanon," Climatic Change, Springer, vol. 131(3), pages 451-464, August.
  222. Liang, Sai & Zhang, Tianzhu, 2011. "What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province," Energy Policy, Elsevier, vol. 39(11), pages 7078-7083.
  223. de Boer, P.M.C., 2006. "Structural decomposition analysis and index number theory: an empirical application of the Montgomery decomposition," Econometric Institute Research Papers EI 2006-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  224. Rosa Duarte & Vicente Pinilla & Ana Serrano, 2018. "Income, Economic Structure and Trade: Impacts on Recent Water Use Trends in the European Union," Sustainability, MDPI, Open Access Journal, vol. 10(1), pages 1-13, January.
  225. Xuemei Jiang & Erik Dietzenbacher & Bart Los, 2014. "A dissection of the growth of regional disparities in Chinese labor productivity between 1997 and 2002," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 513-536, March.
  226. Kagawa, Shigemi & Nansai, Keisuke & Kudoh, Yuki, 2009. "Does product lifetime extension increase our income at the expense of energy consumption?," Energy Economics, Elsevier, vol. 31(2), pages 197-210.
  227. Tian, Xin & Chang, Miao & Tanikawa, Hiroki & Shi, Feng & Imura, Hidefumi, 2013. "Structural decomposition analysis of the carbonization process in Beijing: A regional explanation of rapid increasing carbon dioxide emission in China," Energy Policy, Elsevier, vol. 53(C), pages 279-286.
  228. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
  229. Tao, Zhining & Hewings, Geoffrey & Donaghy, Kieran, 2010. "An economic analysis of Midwestern US criteria pollutant emissions trends from 1970 to 2000," Ecological Economics, Elsevier, vol. 69(8), pages 1666-1674, June.
  230. Fernández Vázquez, Esteban, 2006. "Path Based SDA with additional information of the dependent variable/Path Based SDA con información adicional de la variable dependiente," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 24, pages 645(29á)-64, Agosto.
  231. Lavanda, Italo, 2012. "Employees’ Compensation Share in Italy - La quota del reddito da lavoro dipendente in Italia (1965-2000)," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 65(1), pages 55-64.
  232. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
  233. Shigemi Kagawa & Yuki Kudoh & Keisuke Nansai & Tomohiro Tasaki, 2008. "The Economic and Environmental Consequences of Automobile Lifetime Extension and Fuel Economy Improvement: Japan's Case," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 3-28.
  234. Oshita, Yuko, 2012. "Identifying critical supply chain paths that drive changes in CO2 emissions," Energy Economics, Elsevier, vol. 34(4), pages 1041-1050.
  235. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
  236. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
  237. Aying Liu & David Saal, 2001. "Structural Change in Apartheid-era South Africa: 1975-93," Economic Systems Research, Taylor & Francis Journals, vol. 13(3), pages 235-257.
  238. Jin-Wei Wang & Hua Liao & Bao-Jun Tang & Ruo-Yu Ke & Yi-Ming Wei, 2017. "Is the CO2 Emissions Reduction from Scale Change, Structural Change or Technology Change? Evidence from Non-metallic Sector of 11 Major Economies in 1995-2009," CEEP-BIT Working Papers 101, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  239. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
  240. Maisya Farhati & Raquel Ortega-Argilés, 2018. "Growth of service sector in BRIIC economies," Economic Journal of Emerging Markets, Universitas Islam Indonesia, Department of Economics, vol. 10(1), pages 40-52, April.
  241. Jan A van der Linden & Erik Dietzenbacher, 2000. "The Determinants of Structural Change in the European Union: A New Application of RAS," Environment and Planning A, , vol. 32(12), pages 2205-2229, December.
  242. Anne Owen & Kjartan Steen-Olsen & John Barrett & Thomas Wiedmann & Manfred Lenzen, 2014. "A Structural Decomposition Approach To Comparing Mrio Databases," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 262-283, September.
  243. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
  244. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
  245. Yu, Yadong & Ren, Hongtao & Kharrazi, Ali & Ma, Tieju & Zhu, Bing, 2015. "Exploring socioeconomic drivers of environmental pressure on the city level: The case study of Chongqing in China," Ecological Economics, Elsevier, vol. 118(C), pages 123-131.
  246. Zhaodan Wu & Quanliang Ye & Ze Tian, 2020. "Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China," Sustainability, MDPI, Open Access Journal, vol. 12(18), pages 1-13, September.
  247. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
  248. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
  249. Alex Hoen & Machiel Mulder, 2003. "Explaining Dutch emissions of CO2; a decomposition analysis," CPB Discussion Paper 24.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
  250. Yawen Han & Shigemi Kagawa & Fumiya Nagashima & Keisuke Nansai, 2019. "Sources of China’s Fossil Energy-Use Change," Energies, MDPI, Open Access Journal, vol. 12(4), pages 1-16, February.
  251. Dietzenbacher, Erik & Kulionis, Viktoras & Capurro, Filippo, 2020. "Measuring the effects of energy transition: A structural decomposition analysis of the change in renewable energy use between 2000 and 2014," Applied Energy, Elsevier, vol. 258(C).
  252. Shichun Xu & Chang Gao & Yunfan Li & Xiaoxue Ma & Yifeng Zhou & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Influences the Cross-Border Air Pollutant Transfer in China–United States Trade: A Comparative Analysis Using the Extended IO-SDA Method," Sustainability, MDPI, Open Access Journal, vol. 11(22), pages 1-21, November.
  253. Anne Owen & Richard Wood & John Barrett & Andrew Evans, 2016. "Explaining value chain differences in MRIO databases through structural path decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 243-272, June.
  254. Du, Huibin & Guo, Jianghong & Mao, Guozhu & Smith, Alexander M. & Wang, Xuxu & Wang, Yuan, 2011. "CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio," Energy Policy, Elsevier, vol. 39(10), pages 5980-5987, October.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.