IDEAS home Printed from
   My bibliography  Save this article

Path Based SDA with additional information of the dependent variable/Path Based SDA con información adicional de la variable dependiente



    () (University of Oviedo.Phone: (+34) 985105056.)


Structural decomposition analysis (SDA) has been widely used to assess the relative importance of effects that together constitute a change in the variable of interest. A well-known problem of SDA is that the results often depend strongly on the specific decomposition formula chosen, whereas numerous formulae are equivalent from a theoretical point of view. This non-uniqueness problem is often solved rather pragmatically, by reporting an average of (a subset of) all possible formulae. In previous works the Path Based SDA methodology has been proposed as an alternative approach to these average solutions. This technique allowed the incorporation of some additional information of the factors to choose a specific decomposition formula. This paper suggests that additional information of the variable of interest can be used with this same purpose too. We illustrate the method empirically by investigating the sources of growth in sectoral labor levels in Spain, 1986-1994. El Análisis de Descomposición Estructural (SDA) ha sido ampliamente empleado para cuantificar la importancia relativa de los diferentes efectos que conjuntamente resultan en un cambio en cierta variable de interés. Un problema reconocido de las técnicas SDA es que los resultados frecuentemente dependen en gran medida de la fórmula de descomposición elegida, existiendo numerosas alternativas equivalentes desde un punto de vista teórico. Este problema de no unicidad en las soluciones suele resolverse de un modo bastante pragmático, calculando el promedio de (un subconjunto de) todas las posibles fórmulas. En trabajos previos se ha propuesto la metodología Path Based SDA como enfoque alternativo a estas soluciones medias. Este enfoque permitía la incorporación de información adicional para elegir una forma de descomposición específica, mientras que en este artículo se sugiere que observaciones adicionales de la variable de interés puede ser empleada con este mismo propósito. Esta técnica se ilustra empíricamente analizando las fuentes del crecimiento en los niveles de empleo sectorial en España entre 1986 y 1994.

Suggested Citation

  • Fernández Vázquez, Esteban, 2006. "Path Based SDA with additional information of the dependent variable/Path Based SDA con información adicional de la variable dependiente," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 24, pages 645(29á)-64, Agosto.
  • Handle: RePEc:lrk:eeaart:24_2_21

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. W. Jill Harrison & J. Mark Horridge & K.R. Pearson, 2000. "Decomposing Simulation Results with Respect to Exogenous Shocks," Computational Economics, Springer;Society for Computational Economics, vol. 15(3), pages 227-249, June.
    2. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
    3. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    4. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    5. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    6. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
    7. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    8. Golan, Amos & Judge, George & Robinson, Sherman, 1994. "Recovering Information from Incomplete or Partial Multisectoral Economic Data," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 541-549, August.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:24_2_21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.