IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v82y2006i4p582-601.html
   My bibliography  Save this article

The Impact of Structural Change on Physical Flows in the Economy: Forecasting and Backcasting Using Structural Decomposition Analysis

Author

Listed:
  • Rutger Hoekstra
  • Jeroen C. J. M. van den Bergh

Abstract

Structural decomposition analysis (SDA) is employed to examine physical flows other than energy and energy-related emissions. A unique set of hybrid-unit I/O tables, including both physical and monetary data, was constructed for this purpose. The decomposition results are used to perform forecasting and backcasting (target) analyses. The approach is applied to the use of iron and steel, and plastics in the Nether-lands over the period 1990 to 1997. The analysis shows that export-driven "rematerialization" has occurred during this period, and that the physical volume of the materials considered will continue to grow until 2030 under a wide range of scenarios.

Suggested Citation

  • Rutger Hoekstra & Jeroen C. J. M. van den Bergh, 2006. "The Impact of Structural Change on Physical Flows in the Economy: Forecasting and Backcasting Using Structural Decomposition Analysis," Land Economics, University of Wisconsin Press, vol. 82(4), pages 582-601.
  • Handle: RePEc:uwp:landec:v:82:y:2006:i:4:p:582-601
    as

    Download full text from publisher

    File URL: http://le.uwpress.org/cgi/reprint/82/4/582
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    2. Duchin, Faye & Lange, Glenn-Marie, 1995. "The Future of the Environment: Ecological Economics and Technological Change," OUP Catalogue, Oxford University Press, number 9780195085747.
    3. Ang, B. W. & Lee, P. W., 1996. "Decomposition of industrial energy consumption: The energy coefficient approach," Energy Economics, Elsevier, vol. 18(1-2), pages 129-143, April.
    4. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    5. Jeroen C.J.M. van den Bergh (ed.), 1999. "Handbook of Environmental and Resource Economics," Books, Edward Elgar Publishing, number 801.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
    2. Savona, Maria & Ciarli, Tommaso, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," Ecological Economics, Elsevier, vol. 159(C), pages 244-260.
    3. Okushima, Shinichiro & Tamura, Makoto, 2011. "Identifying the sources of energy use change: Multiple calibration decomposition analysis and structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 22(4), pages 313-326.
    4. Shigemi Kagawa & Seiji Hashimoto & Shunsuke Managi, 2015. "Special issue: studies on industrial ecology," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(3), pages 361-368, July.
    5. Costantini, Valeria & Mazzanti, Massimiliano & Montini, Anna, 2013. "Environmental performance, innovation and spillovers. Evidence from a regional NAMEA," Ecological Economics, Elsevier, vol. 89(C), pages 101-114.
    6. repec:eco:journ2:2017-04-31 is not listed on IDEAS
    7. Kagawa, Shigemi & Nansai, Keisuke & Kudoh, Yuki, 2009. "Does product lifetime extension increase our income at the expense of energy consumption?," Energy Economics, Elsevier, vol. 31(2), pages 197-210.
    8. Oshita, Yuko, 2012. "Identifying critical supply chain paths that drive changes in CO2 emissions," Energy Economics, Elsevier, vol. 34(4), pages 1041-1050.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    2. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    3. Jesper Stage, 2002. "Structural Shifts In Namibian Energy Use: An Input‐Output Approach," South African Journal of Economics, Economic Society of South Africa, vol. 70(6), pages 1103-1125, September.
    4. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    5. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    6. Okushima, Shinichiro & Tamura, Makoto, 2007. "Multiple calibration decomposition analysis: Energy use and carbon dioxide emissions in the Japanese economy, 1970-1995," Energy Policy, Elsevier, vol. 35(10), pages 5156-5170, October.
    7. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    8. Okushima, Shinichiro & Tamura, Makoto, 2011. "Identifying the sources of energy use change: Multiple calibration decomposition analysis and structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 22(4), pages 313-326.
    9. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    10. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    11. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    13. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    14. Marcel Kohler, 2008. "The impact of international trade on changing patterns of energy use in South African industry," Working Papers 088, Economic Research Southern Africa.
    15. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    16. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    17. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.
    18. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    19. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    20. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.

    More about this item

    JEL classification:

    • N5 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:82:y:2006:i:4:p:582-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.