IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v40y2013icp457-467.html
   My bibliography  Save this article

Assessing the technological responsibility of productive structures in electricity consumption

Author

Listed:
  • Alcántara, Vicent
  • Tarancón, Miguel-Angel
  • del Río, Pablo

Abstract

A methodology is developed which allows us to measure the responsibility of the productive structure of an economic system with respect to the consumption and generation of electricity within an input–output framework. We propose a technical indicator of technology responsibility in electricity consumption based on the assessment of technical coefficients. Technological responsibility refers to the capacity of a sector or economic transaction between sectors to induce electricity consumption regardless of the final demand vector. Sectors with a high technological responsibility are those whose technologies use inputs which either directly or indirectly require much electricity independently of the composition of the final demand in the economy. This methodology is applied to the productive sectors of the Spanish economy. It is found out that a few transactions between sectors are highly technologically responsible regarding electricity consumption. The results show that, although the service sectors are the ones with the greatest share in electricity consumption, the industrial sectors (particularly, the extractive, heavy and energy industries), the electricity generation sector and construction are the ones with the greatest technological responsibility, i.e., they have technology mixes with a large propensity to consume electricity, propagating to the other sectors. The sectors with the highest technological responsibility are clustered around three broad sectors: energy, metal manufacturing and transport.

Suggested Citation

  • Alcántara, Vicent & Tarancón, Miguel-Angel & del Río, Pablo, 2013. "Assessing the technological responsibility of productive structures in electricity consumption," Energy Economics, Elsevier, vol. 40(C), pages 457-467.
  • Handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:457-467
    DOI: 10.1016/j.eneco.2013.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988313001576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2013.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takayama,Akira, 1985. "Mathematical Economics," Cambridge Books, Cambridge University Press, number 9780521314985.
    2. Tarancón, Miguel Ángel & del Río, Pablo & Callejas, Fernando, 2011. "Determining the responsibility of manufacturing sectors regarding electricity consumption. The Spanish case," Energy, Elsevier, vol. 36(1), pages 46-52.
    3. Alcántara, Vicent & del Río, Pablo & Hernández, Félix, 2010. "Structural analysis of electricity consumption by productive sectors. The Spanish case," Energy, Elsevier, vol. 35(5), pages 2088-2098.
    4. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
    5. Machado, Giovani & Schaeffer, Roberto & Worrell, Ernst, 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach," Ecological Economics, Elsevier, vol. 39(3), pages 409-424, December.
    6. Alcantara, Vicent & Duarte, Rosa, 2004. "Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis," Energy Policy, Elsevier, vol. 32(2), pages 177-189, January.
    7. Minihan, Erin S. & Wu, Ziping, 2012. "Economic structure and strategies for greenhouse gas mitigation," Energy Economics, Elsevier, vol. 34(1), pages 350-357.
    8. Tarancón, Miguel Angel & del Río, Pablo & Callejas Albiñana, Fernando, 2010. "Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach," Energy Policy, Elsevier, vol. 38(4), pages 1900-1908, April.
    9. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    10. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    11. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.
    12. Miguel angel Tarancon & Fernando Callejas & Erik Dietzenbacher & Michael Lahr, 2008. "A Revision of the Tolerable Limits Approach: Searching for the Important Coefficients," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 75-95.
    13. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    2. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    3. Junhwan Moon & Eungyeong Yun & Jaebeom Lee, 2020. "Identifying the Sustainable Industry by Input–Output Analysis Combined with CO 2 Emissions: A Time Series Study from 2005 to 2015 in South Korea," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    4. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    2. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.
    3. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    4. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    5. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    6. María T. Álvarez-Martínez & Alfredo J. Mainar-Causapé, 2021. "The GHG Emissions Generating Capacity by Productive Sectors in the EU: A SAM Analysis," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    7. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    8. Avelino, André F.T. & Franco-Solís, Alberto & Carrascal-Incera, André, 2021. "Revisiting the Temporal Leontief Inverse: New Insights on the Analysis of Regional Technological Economic Change," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 79-89.
    9. Maria Llop, 2019. "Decomposing the Changes in Water Intensity in a Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3057-3069, July.
    10. Tarancón, Miguel Angel & del Río, Pablo & Callejas Albiñana, Fernando, 2010. "Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach," Energy Policy, Elsevier, vol. 38(4), pages 1900-1908, April.
    11. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    12. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    13. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    14. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    15. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    16. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.
    17. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    18. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    19. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    20. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.

    More about this item

    Keywords

    Electricity demand; Technological responsibility; Eigenvalues; Input–output;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:457-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.