IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39449-7.html
   My bibliography  Save this article

The narrowing gap in developed and developing country emission intensities reduces global trade’s carbon leakage

Author

Listed:
  • Jing Meng

    (University College London)

  • Jingwen Huo

    (Tsinghua University)

  • Zengkai Zhang

    (Xiamen University)

  • Yu Liu

    (Peking University)

  • Zhifu Mi

    (University College London)

  • Dabo Guan

    (University College London
    Tsinghua University)

  • Kuishuang Feng

    (University of Maryland)

Abstract

International trade affects CO2 emissions by redistributing production activities to places where the emission intensities are different from the place of consumption. This study focuses on the net emission change as the result of the narrowing gap in emission intensities between the exporter and importer. Here we show that the relocation of production activities from the global North (developed countries) to the global South (developing countries) in the early 2000s leads to an increase in global emissions due to the higher emission intensities in China and India. The related net emissions are about one-third of the total emissions embodied in the South-North trade. However, the narrowing emission intensities between South-North and the changing trade patterns results in declining net emissions in trade in the past decade. The convergence of emission intensities in the global South alleviates concerns that increasing South-South trade would lead to increased carbon leakage and carbon emissions. The mitigation opportunity to green the supply chain lies in sectors such as electricity, mineral products and chemical products, but calls for a universal assessment of emission intensities and concerted effort.

Suggested Citation

  • Jing Meng & Jingwen Huo & Zengkai Zhang & Yu Liu & Zhifu Mi & Dabo Guan & Kuishuang Feng, 2023. "The narrowing gap in developed and developing country emission intensities reduces global trade’s carbon leakage," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39449-7
    DOI: 10.1038/s41467-023-39449-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39449-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39449-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guilherme MAGACHO & Antoine GODIN & Etienne ESPAGNE, 2022. "Impacts of CBAM on EU trade partners: consequences for developing countries," Working Paper fd822de3-ffa0-44f3-8427-4, Agence française de développement.
    2. Michael Jakob & Jan Christoph Steckel & Ottmar Edenhofer, 2014. "Consumption- Versus Production-Based Emission Policies," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 297-318, October.
    3. Arnold Tukker & Hector Pollitt & Maurits Henkemans, 2020. "Consumption-based carbon accounting: sense and sensibility," Climate Policy, Taylor & Francis Journals, vol. 20(S1), pages 1-13, April.
    4. Angel Aguiar & Maksym Chepeliev & Erwin Corong & Dominique van der Mensbrugghe, 2022. "The Global Trade Analysis Project (GTAP) Data Base: Version 11," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 7(2), pages 1-37, December.
    5. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    6. Bjelle, Eivind Lekve & Wiebe, Kirsten S. & Többen, Johannes & Tisserant, Alexandre & Ivanova, Diana & Vita, Gibran & Wood, Richard, 2021. "Future changes in consumption: The income effect on greenhouse gas emissions," Energy Economics, Elsevier, vol. 95(C).
    7. Astrid Kander & Magnus Jiborn & Daniel D. Moran & Thomas O. Wiedmann, 2015. "National greenhouse-gas accounting for effective climate policy on international trade," Nature Climate Change, Nature, vol. 5(5), pages 431-435, May.
    8. Lu, Qinli & Fang, Kai & Heijungs, Reinout & Feng, Kuishuang & Li, Jiashuo & Wen, Qi & Li, Yanmei & Huang, Xianjin, 2020. "Imbalance and drivers of carbon emissions embodied in trade along the Belt and Road Initiative," Applied Energy, Elsevier, vol. 280(C).
    9. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    10. Glen P. Peters & Robbie M. Andrew & Josep G. Canadell & Sabine Fuss & Robert B. Jackson & Jan Ivar Korsbakken & Corinne Le Quéré & Nebojsa Nakicenovic, 2017. "Key indicators to track current progress and future ambition of the Paris Agreement," Nature Climate Change, Nature, vol. 7(2), pages 118-122, February.
    11. Brandi, Clara, 2021. "Priorities for a development-friendly EU Carbon Border Adjustment (CBAM)," Briefing Papers 20/2021, German Institute of Development and Sustainability (IDOS).
    12. Sun, Chuanwang & Ding, Dan & Yang, Mian, 2017. "Estimating the complete CO2 emissions and the carbon intensity in India: From the carbon transfer perspective," Energy Policy, Elsevier, vol. 109(C), pages 418-427.
    13. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    14. Rocco, Matteo V. & Golinucci, Nicolò & Ronco, Stefano M. & Colombo, Emanuela, 2020. "Fighting carbon leakage through consumption-based carbon emissions policies: Empirical analysis based on the World Trade Model with Bilateral Trades," Applied Energy, Elsevier, vol. 274(C).
    15. Arnold Tukker & Richard Wood & Sarah Schmidt, 2020. "Towards accepted procedures for calculating international consumption-based carbon accounts," Climate Policy, Taylor & Francis Journals, vol. 20(S1), pages 90-106, April.
    16. Michael Jakob & Robert Marschinski, 2013. "Interpreting trade-related CO2 emission transfers," Nature Climate Change, Nature, vol. 3(1), pages 19-23, January.
    17. Jan Christoph Steckel & Jérôme Hilaire & Michael Jakob & Ottmar Edenhofer, 2020. "Coal and carbonization in sub-Saharan Africa," Nature Climate Change, Nature, vol. 10(1), pages 83-88, January.
    18. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    19. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    20. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    21. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    22. Jianchao, Hou & Zhiwei, Wang & Liu, Pingkuo, 2022. "Current practice and future projection for coal-to-SNG in China," Resources Policy, Elsevier, vol. 75(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    2. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    3. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    4. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    5. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    6. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    7. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
    8. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    9. Kulionis, Viktoras & Wood, Richard, 2020. "Explaining decoupling in high income countries: A structural decomposition analysis of the change in energy footprint from 1970 to 2009," Energy, Elsevier, vol. 194(C).
    10. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    11. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    12. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    13. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    14. Magnus Jiborn & Viktoras Kulionis & Astrid Kander, 2020. "Consumption versus Technology: Drivers of Global Carbon Emissions 2000–2014," Energies, MDPI, vol. 13(2), pages 1-12, January.
    15. Wankeun Oh & Jonghyun Yoo, 2020. "Long-Term Increases and Recent Slowdowns of CO 2 Emissions in Korea," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    16. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    17. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    18. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    19. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    20. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39449-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.