IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v170y2022ics030142152200461x.html
   My bibliography  Save this article

Economic drivers of global and regional CH4 emission growth from the consumption perspective

Author

Listed:
  • Sun, Xudong
  • Cheng, Xuelei
  • Guan, Chenghe
  • Wu, Xiaofang
  • Zhang, Bo

Abstract

Global methane (CH4) emission is increasing steadily, however, the current understanding of such growth is insufficient. This paper investigated the economic drivers of global anthropogenic CH4 emission growth from 2001 to 2014, combining the Multi-Regional Input-Output (MRIO) model with Structural Decomposition Analysis (SDA). The contributions of drivers, sectors and international trade to the changes in global and main economies’ emissions were decomposed. Results show that change in consumption per capita was the largest factor for global emission growth while technological improvements contributed the most to emission mitigation. Together, growth in CH4 emissions embodied in final demand in China and India accounted for 56.02% of global total growth, and their growth was mainly caused by the increased consumption of agricultural products per capita. Due to technological development, especially in the manufacture of coke and refined petroleum products, there was a decrease in CH4 emissions embodied in the European countries, the US, and Japan, which offset 33.22% of global emission growth. CH4 emissions embodied in the imports of developed countries from emerging countries declined after 2010. This paper explores how both global and regional CH4 emissions increase from the consumption perspective, which is critical for future emission mitigation in supply chains.

Suggested Citation

  • Sun, Xudong & Cheng, Xuelei & Guan, Chenghe & Wu, Xiaofang & Zhang, Bo, 2022. "Economic drivers of global and regional CH4 emission growth from the consumption perspective," Energy Policy, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:enepol:v:170:y:2022:i:c:s030142152200461x
    DOI: 10.1016/j.enpol.2022.113242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152200461X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    2. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    3. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    4. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    5. de Vries, Gaaitzen J. & Ferrarini, Benno, 2017. "What Accounts for the Growth of Carbon Dioxide Emissions in Advanced and Emerging Economies? The Role of Consumption, Technology and Global Supply Chain Participation," Ecological Economics, Elsevier, vol. 132(C), pages 213-223.
    6. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2017. "The changing of the relationships between carbon footprints and final demand: Panel data evidence for 40 major countries," Energy Economics, Elsevier, vol. 61(C), pages 8-20.
    7. Ji, Xi & Han, Mengyao & Ulgiati, Sergio, 2020. "Optimal allocation of direct and embodied arable land associated to urban economy: Understanding the options deriving from economic globalization," Land Use Policy, Elsevier, vol. 91(C).
    8. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    9. Haidi Gao & Alun Gu & Gehua Wang & Fei Teng, 2019. "A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions," Energies, MDPI, vol. 12(15), pages 1-17, July.
    10. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    11. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    12. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    13. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    14. Jiang, Xuemei & Guan, Dabo, 2016. "Determinants of global CO2 emissions growth," Applied Energy, Elsevier, vol. 184(C), pages 1132-1141.
    15. Meng, Bo & Peters, Glen P. & Wang, Zhi & Li, Meng, 2018. "Tracing CO2 emissions in global value chains," Energy Economics, Elsevier, vol. 73(C), pages 24-42.
    16. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    17. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Xuelei & Wu, Xudong & Guan, Chenghe & Sun, Xudong & Zhang, Bo, 2023. "Impacts of production structure changes on global CH4 emissions: Evidences from income-based accounting and decomposition analysis," Ecological Economics, Elsevier, vol. 213(C).
    2. Rui Song & Jing Liu & Kunyu Niu & Yiyu Feng, 2023. "Comparative Analysis of Trade’s Impact on Agricultural Carbon Emissions in China and the United States," Agriculture, MDPI, vol. 13(10), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    2. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    3. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    4. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    5. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    6. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    7. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    8. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    9. Dietzenbacher, Erik & Kulionis, Viktoras & Capurro, Filippo, 2020. "Measuring the effects of energy transition: A structural decomposition analysis of the change in renewable energy use between 2000 and 2014," Applied Energy, Elsevier, vol. 258(C).
    10. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    11. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    12. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    13. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    14. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    15. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    16. Fernando Bermejo & Raúl del Pozo & Pablo Moya, 2021. "Main Factors Determining the Economic Production Sustained by Public Long-Term Care Spending in Spain," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    17. Savona, Maria & Ciarli, Tommaso, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," Ecological Economics, Elsevier, vol. 159(C), pages 244-260.
    18. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    19. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    20. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:170:y:2022:i:c:s030142152200461x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.