IDEAS home Printed from https://ideas.repec.org/a/taf/ecsysr/v28y2016i2p151-167.html
   My bibliography  Save this article

The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth

Author

Listed:
  • Rutger Hoekstra
  • Bernhard Michel
  • Sangwon Suh

Abstract

The effect of changes in trade patterns, particularly increasing international sourcing, on global CO 2 -emissions growth has yet to be clearly understood. In this paper, we estimate the emission cost of sourcing (ECS), which originates from replacing domestic products by imports from countries with more CO 2 -intensive technologies. Using a structural decomposition analysis, we find that changes in sourcing patterns between 1995 and 2007 contribute (1) to reducing territorial emissions in high-wage countries (70% of their territorial emissions growth) and (2) to increasing territorial emissions in low-wage countries (30% of their territorial emissions increase). The net global effect, the ECS, amounts to 18% of total global CO 2 -emissions growth. Our results call the climate change policies based on territorial principles into question given that they disregard that differences in emission intensities between countries contribute to raising global emissions. In contrast, policies fostering the transfer of cleaner technologies to low-wage countries decrease the ECS.

Suggested Citation

  • Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.
  • Handle: RePEc:taf:ecsysr:v:28:y:2016:i:2:p:151-167
    DOI: 10.1080/09535314.2016.1166099
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09535314.2016.1166099
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09535314.2016.1166099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward Manderson & Richard Kneller, 2012. "Environmental Regulations, Outward FDI and Heterogeneous Firms: Are Countries Used as Pollution Havens?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 317-352, March.
    2. Ockwell, David G. & Watson, Jim & MacKerron, Gordon & Pal, Prosanto & Yamin, Farhana, 2008. "Key policy considerations for facilitating low carbon technology transfer to developing countries," Energy Policy, Elsevier, vol. 36(11), pages 4104-4115, November.
    3. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    4. David Popp, 2011. "International Technology Transfer, Climate Change, and the Clean Development Mechanism," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 131-152, Winter.
    5. He, Jie, 2006. "Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces," Ecological Economics, Elsevier, vol. 60(1), pages 228-245, November.
    6. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    7. Onno Kuik & Reyer Gerlagh, 2003. "Trade Liberalization and Carbon Leakage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 97-120.
    8. Cole, Matthew A. & Elliott, Robert J.R. & Shimamoto, Kenichi, 2005. "Why the grass is not always greener: the competing effects of environmental regulations and factor intensities on US specialization," Ecological Economics, Elsevier, vol. 54(1), pages 95-109, July.
    9. Subbarao, Srikanth & Lloyd, Bob, 2011. "Can the Clean Development Mechanism (CDM) deliver?," Energy Policy, Elsevier, vol. 39(3), pages 1600-1611, March.
    10. Josh Ederington & Arik Levinson & Jenny Minier, 2005. "Footloose and Pollution-Free," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 92-99, February.
    11. Tim Jeppesen & John A. List & Henk Folmer, 2002. "Environmental Regulations and New Plant Location Decisions: Evidence from a Meta‐Analysis," Journal of Regional Science, Wiley Blackwell, vol. 42(1), pages 19-49, February.
    12. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    13. Jan Oosterhaven & Jan Van Der Linden, 1997. "European Technology, Trade and Income Changes for 1975-85: An Intercountry Input-Output Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 9(4), pages 393-412.
    14. Serrano, Mònica & Dietzenbacher, Erik, 2010. "Responsibility and trade emission balances: An evaluation of approaches," Ecological Economics, Elsevier, vol. 69(11), pages 2224-2232, September.
    15. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    16. Felder Stefan & Rutherford Thomas F., 1993. "Unilateral CO2 Reductions and Carbon Leakage: The Consequences of International Trade in Oil and Basic Materials," Journal of Environmental Economics and Management, Elsevier, vol. 25(2), pages 162-176, September.
    17. Eskeland, Gunnar S. & Harrison, Ann E., 2003. "Moving to greener pastures? Multinationals and the pollution haven hypothesis," Journal of Development Economics, Elsevier, vol. 70(1), pages 1-23, February.
    18. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    19. Michel, Bernhard, 2013. "Does offshoring contribute to reducing domestic air emissions? Evidence from Belgian manufacturing," Ecological Economics, Elsevier, vol. 95(C), pages 73-82.
    20. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    21. Rutger Hoekstra, 2005. "Economic Growth, Material Flows and the Environment," Books, Edward Elgar Publishing, number 3700.
    22. Roland Ismer & Karsten Neuhoff, 2007. "Border tax adjustment: a feasible way to support stringent emission trading," European Journal of Law and Economics, Springer, vol. 24(2), pages 137-164, October.
    23. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    24. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    25. Hummels, David & Ishii, Jun & Yi, Kei-Mu, 2001. "The nature and growth of vertical specialization in world trade," Journal of International Economics, Elsevier, vol. 54(1), pages 75-96, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    2. Ana-Isabel Guerra & Ferran Sancho, 2013. "A Linear Price Model With Extractions," EcoMod2013 5113, EcoMod.
    3. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    4. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    5. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    6. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    7. Hong, Jae Pyo & Byun, Jeong Eun & Kim, Pang Ryong, 2016. "Structural changes and growth factors of the ICT industry in Korea: 1995–2009," Telecommunications Policy, Elsevier, vol. 40(5), pages 502-513.
    8. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    9. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    10. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    11. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    12. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    13. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    14. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    15. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    16. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    17. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    18. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    19. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    20. Jansson, Torbjorn & Kuiper, Marijke & Banse, Martin & Heckelei, Thomas & Adenäuer, Marcel, 2008. "Getting the best of both worlds? Linking CAPRI and GTAP for an economywide assessment of agriculture," Conference papers 331757, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ecsysr:v:28:y:2016:i:2:p:151-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CESR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.