IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "High-Frequency Data and Volatility in Foreign-Exchange Rates"

by Zhou, Bin

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Jim Gatheral & Roel Oomen, 2010. "Zero-intelligence realized variance estimation," Finance and Stochastics, Springer, vol. 14(2), pages 249-283, April.
  2. Kim Christensen & Roel Oomen & Mark Podolskij, 2010. "Realised quantile-based estimation of the integrated variance," Post-Print hal-00732538, HAL.
  3. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
  4. Roel C. A. Oomen, 2005. "Properties of Bias-Corrected Realized Variance Under Alternative Sampling Schemes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 555-577.
  5. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
  6. Ting Ting Chen & Tetsuya Takaishi, 2013. "Empirical Study of the GARCH model with Rational Errors," Papers 1312.7057, arXiv.org.
  7. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
  8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  9. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
  10. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
  11. Marine Carrasco & Rachidi Kotchoni, 2011. "Adaptive Realized Kernels," CIRANO Working Papers 2011s-29, CIRANO.
  12. Ying Chen & Wolfgang Härdle & Uta Pigorsch, 2009. "Localized Realized Volatility Modelling," SFB 649 Discussion Papers SFB649DP2009-003, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  13. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
  14. Julien Chevallier, 2010. "Modelling the convenience yield in carbon prices using daily and realized measures," Working Papers halshs-00463921, HAL.
  15. de Jong, Frank & Schotman, Peter C, 2003. "Price Discovery in Fragmented Markets," CEPR Discussion Papers 3987, C.E.P.R. Discussion Papers.
  16. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, School of Economics and Management, University of Aarhus.
  17. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
  18. Neil Shephard & Ole E. Barndorff-Nielsen, 2004. "Multipower Variation and Stochastic Volatility," Economics Series Working Papers 2004-FE-22, University of Oxford, Department of Economics.
  19. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
  20. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
  21. Amir Safari & Detlef Seese, 2010. "Behavior of realized volatility and correlation in exchange markets," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 73-96, September.
  22. Neil Shephard & Ole E. Barndorff-Nielsen, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
  23. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
  24. Harry Vander Elst & David Veredas, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," Statistics and Econometrics Working Papers es142416, Universidad Carlos III, Departamento de Estadística y Econometría.
  25. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
  26. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  27. Hong, Yongmiao, 2001. "A test for volatility spillover with application to exchange rates," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 183-224, July.
  28. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
  29. Trapletti, Adrian & Geyer, Alois & Leisch, Friedrich, 2002. "Forecasting Exchange Rates Using Cointegration Models and Inra-day Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(3), pages 151-66, April.
  30. Ito, T. & Lyons, R. & Melvin, M.T., 1997. "Is There Private Information on the FX Market? The Tokyo Experiment," Papers 97-04, Economisch Institut voor het Midden en Kleinbedrijf-.
  31. James Brugler & Oliver Linton, 2014. "Single stock circuit breakers on the London Stock Exchange: do they improve subsequent market quality?," CeMMAP working papers CWP07/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  32. Martin D. D. Evans, 2002. "FX Trading and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 57(6), pages 2405-2447, December.
  33. Wu, Feng & Myers, Robert J. & Guan, Zhengfei & Wang, Zhiguang, 2015. "Risk-adjusted implied volatility and its performance in forecasting realized volatility in corn futures prices," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 260-274.
  34. Tetsuya Takaishi, 2013. "Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm," Papers 1305.3184, arXiv.org.
  35. Christopher Chambers & Paul Healy, 2012. "Updating toward the signal," Economic Theory, Springer, vol. 50(3), pages 765-786, August.
  36. Elder, John & Miao, Hong & Ramchander, Sanjay, 2012. "Impact of macroeconomic news on metal futures," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 51-65.
  37. Ilze Kalnina & Oliver Linton, 2006. "Estimating quadratic variation consistently in the presence of correlated measurement error," LSE Research Online Documents on Economics 4413, London School of Economics and Political Science, LSE Library.
  38. Jiang, George & Yan, Shu, 2009. "Linear-quadratic term structure models - Toward the understanding of jumps in interest rates," Journal of Banking & Finance, Elsevier, vol. 33(3), pages 473-485, March.
  39. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," PIER Working Paper Archive 05-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  40. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
  41. Carla Ysusi, 2006. "Estimating Integrated Volatility Using Absolute High-Frequency Returns," Working Papers 2006-13, Banco de México.
  42. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
  43. Mihaela Craioveanu & Eric Hillebrand, 2012. "Why It Is Ok To Use The Har-Rv(1,5,21) Model," Working Papers 1201, University of Central Missouri, Department of Economics & Finance, revised Aug 2012.
  44. Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
  45. John M. Maheu & Thomas H. McCurdy, 2009. "Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions?," Working Paper Series 19_09, The Rimini Centre for Economic Analysis, revised Jan 2009.
  46. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
  47. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," OFRC Working Papers Series 2008fe29, Oxford Financial Research Centre.
  48. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, School of Economics and Management, University of Aarhus.
  49. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
  50. Aït-Sahalia, Yacine & Mancini, Loriano, 2008. "Out of sample forecasts of quadratic variation," Journal of Econometrics, Elsevier, vol. 147(1), pages 17-33, November.
  51. Paul Weller & Christopher Neely, 1999. "Intraday Technical Trading in the Foreign Exchange Market," Working Papers wp99-02, Warwick Business School, Finance Group.
  52. Jeremy Large, 2007. "Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment," Economics Series Working Papers 340, University of Oxford, Department of Economics.
  53. Roche, Bruno B. & Flôres Junior, Renato Galvão, 1999. "Volatility modelling in the forex market: an empirical evaluation," Economics Working Papers (Ensaios Economicos da EPGE) 361, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  54. Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," Economics Series Working Papers 2004-FE-20, University of Oxford, Department of Economics.
  55. Todorova, Neda & Worthington, Andrew & Souček, Michael, 2014. "Realized volatility spillovers in the non-ferrous metal futures market," Resources Policy, Elsevier, vol. 39(C), pages 21-31.
  56. LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," CORE Discussion Papers 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  57. Zhang, Lan & Mykland, Per A. & Aït-Sahalia, Yacine, 2011. "Edgeworth expansions for realized volatility and related estimators," Journal of Econometrics, Elsevier, vol. 160(1), pages 190-203, January.
  58. Torben G. Andersen & Tim Bollerslev & Dobrislav Dobrev, 2007. "No-Arbitrage Semi-Martingale Restrictions for Continuous-Time Volatility Models subject to Leverage Effects, Jumps and i.i.d. Noise: Theory and Testable Distributional Implications," NBER Working Papers 12963, National Bureau of Economic Research, Inc.
  59. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  60. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
  61. Neil Shephard & Ole E. Barndorff-Nielsen, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Series Working Papers 240, University of Oxford, Department of Economics.
  62. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, School of Economics and Management, University of Aarhus.
  63. Mancini, Cecilia, 2013. "Measuring the relevance of the microstructure noise in financial data," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2728-2751.
  64. Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  65. Ghysels, Eric & Sinko, Arthur, 2011. "Volatility forecasting and microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 257-271, January.
  66. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(04), pages 677-719, August.
  67. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
  68. Asger Lunde & Peter Reinhard Hansen, 2004. "Realized Variance and IID Market Microstructure Noise," Econometric Society 2004 North American Summer Meetings 526, Econometric Society.
  69. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
  70. Bollerslev, Tim & Domowitz, Ian & Wang, Jianxin, 1997. "Order flow and the bid-ask spread: An empirical probability model of screen-based trading," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1471-1491, June.
  71. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Realized Volatility Using Subsample Averaging," Working Papers 201410, University of California at Riverside, Department of Economics.
  72. Shinn-Juh Lin & Jian Yang, 2003. "Examining intraday returns with buy/sell information," Applied Financial Economics, Taylor & Francis Journals, vol. 13(6), pages 447-461.
  73. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
  74. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
  75. de Jong, F.C.J.M. & Schotman, P.C., 2010. "Price discovery in fragmented markets," Other publications TiSEM 4650a9e7-c4cf-41cf-a771-e, Tilburg University, School of Economics and Management.
  76. Michiel de Pooter & Martin Martens & Dick van Dijk, 2005. "Predicting the Daily Covariance Matrix for S&P 100 Stocks using Intraday Data - But which Frequency to use?," Tinbergen Institute Discussion Papers 05-089/4, Tinbergen Institute, revised 03 Jan 2006.
  77. Helena Veiga, 2006. "Volatility Forecasts: A Continuous Time Model Versus Discrete Time Models1," Statistics and Econometrics Working Papers ws062509, Universidad Carlos III, Departamento de Estadística y Econometría.
  78. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
  79. Mike So & Rui Xu, 2013. "Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data," Asia-Pacific Financial Markets, Springer, vol. 20(1), pages 83-111, March.
  80. Prateek Sharma & Swati Sharma, 2015. "Forecasting gains of robust realized variance estimators: evidence from European stock markets," Economics Bulletin, AccessEcon, vol. 35(1), pages 61-69.
  81. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models : from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
  82. Valenzuela, Marcela & Zer, Ilknur & Fryzlewicz, Piotr & Rheinlander, Thorsten, 2014. "Relative Liquidity and Future Volatility," Finance and Economics Discussion Series 2014-45, Board of Governors of the Federal Reserve System (U.S.).
  83. Cem Cakmakli & Richard Paap & Dick J.C. van Dijk, 2011. "Modeling and Estimation of Synchronization in Multistate Markov-Switching Models," Tinbergen Institute Discussion Papers 11-002/4, Tinbergen Institute.
  84. Sévi, Benoît, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Economic Modelling, Elsevier, vol. 31(C), pages 189-197.
  85. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
  86. John Garvey & Martin Mullins, 2009. "An Examination of "New" and "Old" Terrorism Using High-Frequency Data," Economics of Security Working Paper Series 18, DIW Berlin, German Institute for Economic Research.
  87. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
  88. Pollock, Andrew C. & Macaulay, Alex & Thomson, Mary E. & Onkal, Dilek, 2005. "Performance evaluation of judgemental directional exchange rate predictions," International Journal of Forecasting, Elsevier, vol. 21(3), pages 473-489.
  89. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
  90. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
  91. Poskitt, Russell, 2008. "The truth about interest rate futures and forwards: Evidence from high frequency data," Global Finance Journal, Elsevier, vol. 18(3), pages 319-336.
  92. Renault, Eric & Werker, Bas J.M., 2011. "Causality effects in return volatility measures with random times," Journal of Econometrics, Elsevier, vol. 160(1), pages 272-279, January.
  93. repec:ebl:ecbull:eb-14-00886 is not listed on IDEAS
  94. Yacine Ait-Sahalia & Jialin Yu, 2008. "High Frequency Market Microstructure Noise Estimates and Liquidity Measures," NBER Working Papers 13825, National Bureau of Economic Research, Inc.
  95. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
  96. Sapp, Stephen G., 2002. "Price Leadership in the Spot Foreign Exchange Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(03), pages 425-448, September.
  97. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
  98. Vuorenmaa, Tommi A., 2008. "Decimalization, Realized Volatility, and Market Microstructure Noise," MPRA Paper 8692, University Library of Munich, Germany.
  99. Ilze Kalnina & Oliver Linton, 2006. "Estimating Quadratic VariationConsistently in thePresence of Correlated MeasurementError," STICERD - Econometrics Paper Series 509, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  100. Linlan Xiao, 2013. "Realized volatility forecasting: empirical evidence from stock market indices and exchange rates," Applied Financial Economics, Taylor & Francis Journals, vol. 23(1), pages 57-69, January.
  101. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, School of Economics and Management, University of Aarhus.
  102. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
  103. Yeh, Jin-Huei & Wang, Jying-Nan, 2010. "Correcting microstructure comovement biases for integrated covariance," Finance Research Letters, Elsevier, vol. 7(3), pages 184-191, September.
  104. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Value-at-Risk Using High Frequency Information," Working Papers 201409, University of California at Riverside, Department of Economics.
  105. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
  106. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
  107. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
  108. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
  109. Cecilia Mancini, 2012. "Measuring the relevance of the microstructure noise in financial data," Working Papers - Mathematical Economics 2012-09, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  110. Brandvold, Morten & Molnár, Peter & Vagstad, Kristian & Andreas Valstad, Ole Christian, 2015. "Price discovery on Bitcoin exchanges," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 36(C), pages 18-35.
  111. Kalnina, Ilze & Linton, Oliver, 2008. "Estimating quadratic variation consistently in the presence of endogenous and diurnal measurement error," Journal of Econometrics, Elsevier, vol. 147(1), pages 47-59, November.
  112. Bandi, Federico M. & Russell, Jeffrey R. & Yang, Chen, 2008. "Realized volatility forecasting and option pricing," Journal of Econometrics, Elsevier, vol. 147(1), pages 34-46, November.
  113. Chiang, Thomas C. & Yu, Hai-Chin & Wu, Ming-Chya, 2009. "Statistical properties, dynamic conditional correlation and scaling analysis: Evidence from Dow Jones and Nasdaq high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1555-1570.
  114. repec:hal:journl:peer-00815564 is not listed on IDEAS
  115. Valenzuela, Marcela & Zer, Ilknur & Fryzlewicz, Piotr & Rheinländer, Thorsten, 2015. "Relative liquidity and future volatility," Journal of Financial Markets, Elsevier, vol. 24(C), pages 25-48.
  116. Carla Ysusi, 2007. "Multipower Variation Under Market Microstructure Effects," Working Papers 2007-13, Banco de México.
  117. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
  118. Yue Fang, 2000. "When Should Time be Continuous? Volatility Modeling and Estimation of High-Frequency Data," Econometric Society World Congress 2000 Contributed Papers 0843, Econometric Society.
  119. Shcherba, Alexandr, 2014. "Comparing «Realized volatility» models in the VaR calculation for the Russian equity market," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 34(2), pages 120-136.
  120. Carla Ysusi, 2006. "Detecting Jumps in High-Frequency Financial Series Using Multipower Variation," Working Papers 2006-10, Banco de México.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.