IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Pricing Nikkei 225 Options Using Realized Volatility

  • Masato Ubukata

    (Assistant Professor, Department of Economics, Kushiro Public University of Economics (E-mail: ubukata@kushiro-pu.ac.jp))

  • Toshiaki Watanabe

    (Professor, Institute of Economic Research, Hitotsubashi University (E-mail: watanabe@ier.hit-u.ac.jp) Institute for Monetary and Economic Studies, Bank of Japan)

Registered author(s):

    This article analyzes whether daily realized volatility, which is the sum of squared intraday returns over a day, is useful for option pricing. Different realized volatilities are calculated with or without taking account of microstructure noise and with or without using overnight and lunch-time returns. ARFIMA, ARFIMAX, HAR, HARX models are employed to specify the dynamics of realized volatility. ARFIMA and HAR models can capture the long-memory property and ARFIMAX and HARX models can also capture the asymmetry in volatility depending on the sign of previous day's return. Option prices are derived under the assumption of risk-neutrality. For comparison, GARCH, EGARCH and FIEGARCH models are estimated using daily returns, where option prices are derived by assuming the risk-neutrality and by using the Duan (1995) method in which the assumption of risk-neutrality is relaxed. Main results using the Nikkei 225 stock index and its put options prices are: (1) ARFIMAX model with daily realized volatility performs best, (2) the Hansen and Lunde ( 2005a) adjustment without using overnight and lunch-time returns can improve the performance, (3) if the Hansen and Lunde (2005a), which also plays a role to remove the bias caused by the microstructure noise by setting the sample mean of realized volatility equal to the sample variance of daily returns, is used, the other methods for taking account of microstructure noise do not necessarily improve the performance and (4) the Duan (1995) method does not improve the performance compared with assuming the risk neutrality.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.imes.boj.or.jp/research/papers/english/11-E-18.pdf
    Download Restriction: no

    Paper provided by Institute for Monetary and Economic Studies, Bank of Japan in its series IMES Discussion Paper Series with number 11-E-18.

    as
    in new window

    Length:
    Date of creation: Aug 2011
    Date of revision:
    Handle: RePEc:ime:imedps:11-e-18
    Contact details of provider: Postal: 2-1-1 Nihonbashi, Hongoku-cho, Chuo-ku, Tokyo 103
    Phone: +81-3-3279-111
    Fax: +81-3-3510-1265
    Web page: http://www.imes.boj.or.jp/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
    3. Schoffer, Olaf, 2003. "HY-A-PARCH: A stationary A-PARCH model with long memory," Technical Reports 2003,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Bandi, Federico M. & Russell, Jeffrey R. & Yang, Chen, 2008. "Realized volatility forecasting and option pricing," Journal of Econometrics, Elsevier, vol. 147(1), pages 34-46, November.
    7. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    8. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, . "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, School of Economics and Management, University of Aarhus.
    9. Harris, Lawrence, 1990. "Estimation of Stock Price Variances and Serial Covariances from Discrete Observations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(03), pages 291-306, September.
    10. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    11. Christian Conrad & Berthold R. Haag, 2006. "Inequality Constraints in the Fractionally Integrated GARCH Model," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 413-449.
    12. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously," CIRJE F-Series CIRJE-F-515, CIRJE, Faculty of Economics, University of Tokyo.
    13. Daisuke Nagakura & Toshiaki Watanabe, 2011. "A State Space Approach to Estimating the Integrated Variance under the Existence of Market Microstructure Noise," Global COE Hi-Stat Discussion Paper Series gd11-200, Institute of Economic Research, Hitotsubashi University.
    14. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ime:imedps:11-e-18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kinken)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.