IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Learning rates for energy technologies"

by McDonald, Alan & Schrattenholzer, Leo

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Zhang, Zhong Xiang, 2012. "Competitiveness and Leakage Concerns and Border Carbon Adjustments," International Review of Environmental and Resource Economics, now publishers, vol. 6(3), pages 225-287, December.
  2. Hayward, Jennifer A. & Graham, Paul W., 2013. "A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies," Energy Economics, Elsevier, vol. 40(C), pages 537-548.
  3. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
  4. Brown, James & Hendry, Chris, 2009. "Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics," Energy Policy, Elsevier, vol. 37(7), pages 2560-2573, July.
  5. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
  6. Marcel Huber & Katja Hessel & Heinrich Traublinger & Karen Pittel, 2012. "Symposium »Energiewende – an die technologische Spitze oder ins wirtschaftliche Abseits?«," Ifo Schnelldienst, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(06), pages 03-21, 03.
  7. Okullo, Samuel & Reynes, F. & Hofkes, M., 2016. "Biofuel Mandating and the Green Paradox," Discussion Paper 2016-024, Tilburg University, Center for Economic Research.
  8. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
  9. Bristow, David & Kennedy, Christopher A., 2010. "Potential of building-scale alternative energy to alleviate risk from the future price of energy," Energy Policy, Elsevier, vol. 38(4), pages 1885-1894, April.
  10. Matteson, Schuyler & Williams, Eric, 2015. "Residual learning rates in lead-acid batteries: Effects on emerging technologies," Energy Policy, Elsevier, vol. 85(C), pages 71-79.
  11. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Department Economics, Swedish University of Agricultural Sciences.
  12. Yeh, Sonia & Loughlin, Daniel H. & Shay, Carol & Gage, Cynthia, 2007. "An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions," Institute of Transportation Studies, Working Paper Series qt55g1z6zq, Institute of Transportation Studies, UC Davis.
  13. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
  14. Dalton, G.J. & Alcorn, R. & Lewis, T., 2012. "A 10 year installation program for wave energy in Ireland: A case study sensitivity analysis on financial returns," Renewable Energy, Elsevier, vol. 40(1), pages 80-89.
  15. Uyterlinde, Martine A. & Junginger, Martin & de Vries, Hage J. & Faaij, Andre P.C. & Turkenburg, Wim C., 2007. "Implications of technological learning on the prospects for renewable energy technologies in Europe," Energy Policy, Elsevier, vol. 35(8), pages 4072-4087, August.
  16. Papineau, Maya, 2006. "An economic perspective on experience curves and dynamic economies in renewable energy technologies," Energy Policy, Elsevier, vol. 34(4), pages 422-432, March.
  17. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
  18. Hettinga, W.G. & Junginger, H.M. & Dekker, S.C. & Hoogwijk, M. & McAloon, A.J. & Hicks, K.B., 2009. "Understanding the reductions in US corn ethanol production costs: An experience curve approach," Energy Policy, Elsevier, vol. 37(1), pages 190-203, January.
  19. Malte Schwoon, 2006. "Learning-by-doing, Learning Spillovers and the Diffusion of Fuel Cell Vehicles," Working Papers FNU-112, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
  20. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
  21. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2008. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution and Learning," IDEI Working Papers 52, Institut d'Économie Industrielle (IDEI), Toulouse.
  22. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
  23. Reyer Gerlagh & Bob van der Zwaan & Marjan Hofkes & Ger Klaassen, 2004. "Impacts of CO 2 -Taxes in an Economy with Niche Markets and Learning-by-Doing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 367-394, July.
  24. Chang, Yu Sang, 2014. "Comparative analysis of long-term road fatality targets for individual states in the US—An application of experience curve models," Transport Policy, Elsevier, vol. 36(C), pages 53-69.
  25. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
  26. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
  27. Varho, Vilja & Tapio, Petri, 2005. "Wind power in Finland up to the year 2025--`soft' scenarios based on expert views," Energy Policy, Elsevier, vol. 33(15), pages 1930-1947, October.
  28. MacKerron, Gordon, 2004. "Nuclear power and the characteristics of `ordinariness'--the case of UK energy policy," Energy Policy, Elsevier, vol. 32(17), pages 1957-1965, November.
  29. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
  30. Giovanni Dosi & Richard R. Nelson, 2009. "Technical Change and Industrial Dynamics as Evolutionary Processes," LEM Papers Series 2009/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  31. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
  32. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
  33. Hongbo Duan, Lei Zhu, Gürkan Kumbaroglu, and Ying Fan, 2016. "Regional Opportunities for China To Go Low-Carbon: Results from the REEC Model," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
  34. Rout, Ullash K. & Fahl, Ulrich & Remme, Uwe & Blesl, Markus & Voß, Alfred, 2009. "Endogenous implementation of technology gap in energy optimization models--a systematic analysis within TIMES G5 model," Energy Policy, Elsevier, vol. 37(7), pages 2814-2830, July.
  35. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, Elsevier.
  36. van Sark, W.G.J.H.M. & Alsema, E.A., 2010. "Potential errors when fitting experience curves by means of spreadsheet software," Energy Policy, Elsevier, vol. 38(11), pages 7508-7511, November.
  37. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
  38. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
  39. Scrieciu, S. Şerban & Barker, Terry & Ackerman, Frank, 2013. "Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis," Ecological Economics, Elsevier, vol. 85(C), pages 155-165.
  40. Narbel, Patrick André & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 91-97.
  41. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
  42. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
  43. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
  44. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
  45. Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.
  46. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
  47. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
  48. Rivers, Nic & Jaccard, Mark, 2006. "Choice of environmental policy in the presence of learning by doing," Energy Economics, Elsevier, vol. 28(2), pages 223-242, March.
  49. Graham, Paul W. & Williams, David J., 2003. "Optimal technological choices in meeting Australian energy policy goals," Energy Economics, Elsevier, vol. 25(6), pages 691-712, November.
  50. Pasaoglu, Guzay & Harrison, Gillian & Jones, Lee & Hill, Andrew & Beaudet, Alexandre & Thiel, Christian, 2016. "A system dynamics based market agent model simulating future powertrain technology transition: Scenarios in the EU light duty vehicle road transport sector," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 133-146.
  51. Beliën, Jeroen & De Boeck, Liesje & Colpaert, Jan & Cooman, Gert, 2013. "The best time to invest in photovoltaic panels in Flanders," Renewable Energy, Elsevier, vol. 50(C), pages 348-358.
  52. Lecca, Patrizio & McGregor, Peter G. & Swales, Kim J. & Tamba, Marie, 2017. "The Importance of Learning for Achieving the UK's Targets for Offshore Wind," Ecological Economics, Elsevier, vol. 135(C), pages 259-268.
  53. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
  54. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
  55. Liu, Qiang & Shi, Minjun & Jiang, Kejun, 2009. "New power generation technology options under the greenhouse gases mitigation scenario in China," Energy Policy, Elsevier, vol. 37(6), pages 2440-2449, June.
  56. Reichenbach, Johanna & Requate, Till, 2012. "Subsidies for renewable energies in the presence of learning effects and market power," Resource and Energy Economics, Elsevier, vol. 34(2), pages 236-254.
  57. Martinsen, Thomas, 2011. "Technology learning in a small open economy--The systems, modelling and exploiting the learning effect," Energy Policy, Elsevier, vol. 39(5), pages 2361-2372, May.
  58. Finney, Karen N. & Sharifi, Vida N. & Swithenbank, Jim, 2012. "The negative impacts of the global economic downturn on funding decentralised energy in the UK," Energy Policy, Elsevier, vol. 51(C), pages 290-300.
  59. Harashima, Taiji, 2014. "Division of Work and Fragmented Information: An Explanation for the Diminishing Marginal Product of Labor," MPRA Paper 56301, University Library of Munich, Germany.
  60. Taillant, P., 2001. "Compétition technologique, rendements croissants et lock-in dans la production d'électricité d'origine solaire photovoltaïque," Cahiers du CREDEN (CREDEN Working Papers) 01.10.25, CREDEN (Centre de Recherche en Economie et Droit de l'Energie), Faculty of Economics, University of Montpellier 1.
  61. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Blok, Kornelis, 2010. "Analyzing price and efficiency dynamics of large appliances with the experience curve approach," Energy Policy, Elsevier, vol. 38(2), pages 770-783, February.
  62. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
  63. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
  64. Chi, Chunjie & Ma, Tieju & Zhu, Bing, 2012. "Towards a low-carbon economy: Coping with technological bifurcations with a carbon tax," Energy Economics, Elsevier, vol. 34(6), pages 2081-2088.
  65. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
  66. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2012. "Cycles in nonrenewable resource prices with pollution and learning-by-doing," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1448-1461.
  67. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
  68. Trappey, Amy J.C. & Trappey, Charles V. & Liu, Penny H.Y. & Lin, Lee-Cheng & Ou, Jerry J.R., 2013. "A hierarchical cost learning model for developing wind energy infrastructures," International Journal of Production Economics, Elsevier, vol. 146(2), pages 386-391.
  69. Ingmar Schumacher & Pierre-André Jouvet, 2009. "Sustainability, resource substitution in energy inputs and learning," Working Papers hal-00356044, HAL.
  70. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
  71. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
  72. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
  73. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
  74. Hannes Egli, 2005. "A New Approach to Pollution Modelling in Models of the Environmental Kuznets Curve," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 141(III), pages 459-473, September.
  75. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
  76. Schoots, K. & Kramer, G.J. & van der Zwaan, B.C.C., 2010. "Technology learning for fuel cells: An assessment of past and potential cost reductions," Energy Policy, Elsevier, vol. 38(6), pages 2887-2897, June.
  77. Weisser, Daniel, 2004. "Power sector reform in small island developing states: what role for renewable energy technologies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 101-127, April.
  78. Ek, Kristina, 2005. "Public and private attitudes towards "green" electricity: the case of Swedish wind power," Energy Policy, Elsevier, vol. 33(13), pages 1677-1689, September.
  79. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
  80. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
  81. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
  82. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2011. "Would hotelling kill the electric car?," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 281-296, May.
  83. Szabó, Sándor & Jäger-Waldau, Arnulf & Szabó, László, 2010. "Risk adjusted financial costs of photovoltaics," Energy Policy, Elsevier, vol. 38(7), pages 3807-3819, July.
  84. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Department Economics, Swedish University of Agricultural Sciences.
  85. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
  86. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
  87. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2009. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution Learning," Working Papers 2009-10, University of Alberta, Department of Economics.
  88. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
  89. Tieju Ma, 2010. "Coping with Uncertainties in Technological Learning," Management Science, INFORMS, vol. 56(1), pages 192-201, January.
  90. Rivers, Nic & Jaccard, Mark, 2006. "Useful models for simulating policies to induce technological change," Energy Policy, Elsevier, vol. 34(15), pages 2038-2047, October.
  91. Williges, Keith & Lilliestam, Johan & Patt, Anthony, 2010. "Making concentrated solar power competitive with coal: The costs of a European feed-in tariff," Energy Policy, Elsevier, vol. 38(6), pages 3089-3097, June.
  92. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
  93. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
  94. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2014. "How policy choice affects investment in low-carbon technology: The case of CO2 capture in indirect coal liquefaction in China," Energy, Elsevier, vol. 73(C), pages 670-679.
  95. Soren Lindner & Sonja Peterson & Wilhelm Windhorst, 2010. "An economic and environmental assessment of carbon capture and storage (CCS) power plants: a case study for the City of Kiel," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 53(8), pages 1069-1088.
  96. Ben Maalla, El Mehdi & Kunsch, Pierre L., 2008. "Simulation of micro-CHP diffusion by means of System Dynamics," Energy Policy, Elsevier, vol. 36(7), pages 2308-2319, July.
  97. Jamasb, T., 2006. "Technical Change Theory and Learning Curves: Patterns of Progress in Energy Technologies," Cambridge Working Papers in Economics 0625, Faculty of Economics, University of Cambridge.
  98. Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
  99. Bob van der Zwaan & Reyer Gerlagh, 2004. "Climate Uncertainty and the Necessity to Transform Global Energy Supply," Working Papers 2004.95, Fondazione Eni Enrico Mattei.
  100. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
  101. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
  102. Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2015. "Defining The Abatement Cost In Presence Of Learning-By-Doing: Application To The Fuel Cell Electric Vehicle," Working Papers hal-01158461, HAL.
  103. Wu, Jung-Hua & Huang, Yun-Hsun, 2014. "Electricity portfolio planning model incorporating renewable energy characteristics," Applied Energy, Elsevier, vol. 119(C), pages 278-287.
  104. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
  105. Narbel, Patrick A. & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Discussion Papers 2014/14, Department of Business and Management Science, Norwegian School of Economics.
  106. Chang, Yusang & Lee, Jinsoo & Yoon, Hyerim, 2012. "Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook," Energy Policy, Elsevier, vol. 50(C), pages 154-160.
  107. Weiss, Martin & Dittmar, Lars & Junginger, Martin & Patel, Martin K. & Blok, Kornelis, 2009. "Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands," Energy Policy, Elsevier, vol. 37(8), pages 2962-2976, August.
  108. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.
  109. Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
  110. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
  111. van der Zwaan, Bob & Rivera-Tinoco, Rodrigo & Lensink, Sander & van den Oosterkamp, Paul, 2012. "Cost reductions for offshore wind power: Exploring the balance between scaling, learning and R&D," Renewable Energy, Elsevier, vol. 41(C), pages 389-393.
  112. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
  113. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Renewable energy scenarios for costs reductions in the European Union," Renewable Energy, Elsevier, vol. 96(PA), pages 80-90.
  114. Münnich Vass, Miriam, 2017. "Renewable energies cannot compete with forest carbon sequestration to cost-efficiently meet the EU carbon target for 2050," Renewable Energy, Elsevier, vol. 107(C), pages 164-180.
  115. Mundada, Aishwarya S. & Prehoda, Emily W. & Pearce, Joshua M., 2017. "U.S. market for solar photovoltaic plug-and-play systems," Renewable Energy, Elsevier, vol. 103(C), pages 255-264.
  116. Barker, Terry & Junankar, Sudhir & Pollitt, Hector & Summerton, Philip, 2007. "Carbon leakage from unilateral Environmental Tax Reforms in Europe, 1995-2005," Energy Policy, Elsevier, vol. 35(12), pages 6281-6292, December.
  117. Hendry, Chris & Harborne, Paul, 2011. "Changing the view of wind power development: More than "bricolage"," Research Policy, Elsevier, vol. 40(5), pages 778-789, June.
  118. CHAKRAVORTY Ujjayant & LEACH Andrew & MOREAUX Michel, 2008. ""Twin Peaks" in Energy Prices: A Polluting Fossil Fuel with Learning in the Clean Substitute," LERNA Working Papers 08.15.259, LERNA, University of Toulouse.
  119. Brandt, Adam R. & Plevin, Richard J. & Farrell, Alexander E., 2010. "Dynamics of the oil transition: Modeling capacity, depletion, and emissions," Energy, Elsevier, vol. 35(7), pages 2852-2860.
  120. Taishi Sugiyama & Jonathan Sinton, 2005. "Orchestra of Treaties: A Future Climate Regime Scenario with Multiple Treaties among Like-minded Countries," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 5(1), pages 65-88, 03.
  121. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
  122. Junginger, M. & Agterbosch, S. & Faaij, A. & Turkenburg, W., 2004. "Renewable electricity in the Netherlands," Energy Policy, Elsevier, vol. 32(9), pages 1053-1073, June.
  123. Ek, Kristina & Persson, Lars & Johansson, Maria & Waldo, Åsa, 2013. "Location of Swedish wind power—Random or not? A quantitative analysis of differences in installed wind power capacity across Swedish municipalities," Energy Policy, Elsevier, vol. 58(C), pages 135-141.
  124. David F. Bradford & Seung-Rae Kim & Klaus Keller, 2004. "Optimal Technological Portfolios for Climate-Change Policy under Uncertainty: A Computable General Equilibrium Approach," Computing in Economics and Finance 2004 140, Society for Computational Economics.
  125. Rai, Varun & Victor, David G. & Thurber, Mark C., 2010. "Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies," Energy Policy, Elsevier, vol. 38(8), pages 4089-4098, August.
  126. Wang, Zheng & Zhu, Yanshuo & Zhu, Yongbin & Shi, Ying, 2016. "Energy structure change and carbon emission trends in China," Energy, Elsevier, vol. 115(P1), pages 369-377.
  127. Garcia, Raquel S. & Weisser, Daniel, 2006. "A wind–diesel system with hydrogen storage: Joint optimisation of design and dispatch," Renewable Energy, Elsevier, vol. 31(14), pages 2296-2320.
  128. Palmer, Karen & Burtraw, Dallas, 2005. "Cost-effectiveness of renewable electricity policies," Energy Economics, Elsevier, vol. 27(6), pages 873-894, November.
  129. Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
  130. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
  131. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
  132. Ma, Tieju & Chen, Huayi, 2015. "Adoption of an emerging infrastructure with uncertain technological learning and spatial reconfiguration," European Journal of Operational Research, Elsevier, vol. 243(3), pages 995-1003.
  133. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
  134. Paul Ekins, 2010. "Eco-innovation for environmental sustainability: concepts, progress and policies," International Economics and Economic Policy, Springer, vol. 7(2), pages 267-290, August.
  135. Balash, Peter & Nichols, Christopher & Victor, Nadejda, 2013. "Multi-regional evaluation of the U.S. electricity sector under technology and policy uncertainties: Findings from MARKAL EPA9rUS modeling," Socio-Economic Planning Sciences, Elsevier, vol. 47(2), pages 89-119.
  136. Giovanni Dosi & Marco Grazzi & Nanditha Mathew, 2016. "The cost-quantity relations and the diverse patterns of ülearning by doingý: Evidence from India," LEM Papers Series 2016/26, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  137. Anna Créti & Jérôme Joaug, 2012. "Let the sun shine: Optimal deployment of photovoltaics in Germany," Working Papers hal-00751743, HAL.
  138. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
  139. Chen, Huayi & Ma, Tieju, 2014. "Technology adoption with limited foresight and uncertain technological learning," European Journal of Operational Research, Elsevier, vol. 239(1), pages 266-275.
  140. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
  141. repec:eco:journ2:2017-02-20 is not listed on IDEAS
  142. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
  143. Jean-François Mercure, 2015. "An age structured demographic theory of technological change," Journal of Evolutionary Economics, Springer, vol. 25(4), pages 787-820, September.
  144. Choiniere, Conrad J., 2002. "Contract Structure, Learning-By-Doing And The Viability Of New Agricultural Industries," 2002 Annual meeting, July 28-31, Long Beach, CA 19665, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  145. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
  146. Bates, E.A. & Driscoll, M.J. & Lester, R.K. & Arnold, B.W., 2014. "Can deep boreholes solve America׳s nuclear waste problem?," Energy Policy, Elsevier, vol. 72(C), pages 186-189.
  147. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
  148. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.
  149. Densing, Martin & Turton, Hal & Bäuml, Georg, 2012. "Conditions for the successful deployment of electric vehicles – A global energy system perspective," Energy, Elsevier, vol. 47(1), pages 137-149.
  150. Duan, Hong-Bo & Fan, Ying & Zhu, Lei, 2013. "What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS?," Applied Energy, Elsevier, vol. 112(C), pages 866-875.
  151. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
  152. Jaccard, Mark & Murphy, Rose & Rivers, Nic, 2004. "Energy-environment policy modeling of endogenous technological change with personal vehicles: combining top-down and bottom-up methods," Ecological Economics, Elsevier, vol. 51(1-2), pages 31-46, November.
  153. Méjean, A. & Hope, C., 2010. "The Effect of CO2 Pricing on Conventional and Non-Conventional Oil Supply and Demand," Cambridge Working Papers in Economics 1054, Faculty of Economics, University of Cambridge.
  154. Koomey, Jonathan & Hultman, Nathan E., 2007. "A reactor-level analysis of busbar costs for US nuclear plants, 1970-2005," Energy Policy, Elsevier, vol. 35(11), pages 5630-5642, November.
  155. Bo Xu & Lianyong Feng & William X. Wei & Yan Hu & Jianliang Wang, 2014. "A Preliminary Forecast of the Production Status of China’s Daqing Oil field from the Perspective of EROI," Sustainability, MDPI, Open Access Journal, vol. 6(11), pages 1-21, November.
  156. Méjean, Aurélie & Hope, Chris, 2010. "Modelling the costs of energy crops: A case study of US corn and Brazilian sugar cane," Energy Policy, Elsevier, vol. 38(1), pages 547-561, January.
  157. Hervás Soriano, Fernando & Mulatero, Fulvio, 2011. "EU Research and Innovation (R&I) in renewable energies: The role of the Strategic Energy Technology Plan (SET-Plan)," Energy Policy, Elsevier, vol. 39(6), pages 3582-3590, June.
  158. Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
  159. Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
  160. Egging, Ruud, 2013. "Drivers, trends, and uncertainty in long-term price projections for energy management in public buildings," Energy Policy, Elsevier, vol. 62(C), pages 617-624.
  161. Turnbull, D. & Glaser, A. & Goldston, R.J., 2015. "Investigating the value of fusion energy using the Global Change Assessment Model," Energy Economics, Elsevier, vol. 51(C), pages 346-353.
  162. Clarke, Leon & Weyant, John & Birky, Alicia, 2006. "On the sources of technological change: Assessing the evidence," Energy Economics, Elsevier, vol. 28(5-6), pages 579-595, November.
  163. Szabó, Sándor & Jäger-Waldau, Arnulf, 2008. "More competition: Threat or chance for financing renewable electricity?," Energy Policy, Elsevier, vol. 36(4), pages 1436-1447, April.
  164. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "Optimal carbon taxes in carbon-constrained China: A logistic-induced energy economic hybrid model," Energy, Elsevier, vol. 69(C), pages 345-356.
  165. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
  166. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
  167. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
  168. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
  169. Huang, Yun-Hsun & Wu, Jung-Hua, 2008. "A portfolio risk analysis on electricity supply planning," Energy Policy, Elsevier, vol. 36(2), pages 627-641, February.
  170. van der Zwaan, Bob & Gerlagh, Reyer, 2006. "Climate sensitivity uncertainty and the necessity to transform global energy supply," Energy, Elsevier, vol. 31(14), pages 2571-2587.
  171. Elke Moser & Dieter Grass & Gernot Tragler, 2016. "A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 545-575, July.
  172. Chris Bataille, Mark Jaccard, John Nyboer and Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-112.
  173. Darby, Sarah, 2006. "Social learning and public policy: Lessons from an energy-conscious village," Energy Policy, Elsevier, vol. 34(17), pages 2929-2940, November.
  174. Nisar, Arsalan & Ruiz, Felipe & Palacios, Miguel, 2013. "Organisational learning, strategic rigidity and technology adoption: Implications for electric utilities and renewable energy firms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 438-445.
  175. Dong, Andy & Sarkar, Somwrita, 2015. "Forecasting technological progress potential based on the complexity of product knowledge," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 599-610.
  176. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
  177. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
  178. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
  179. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
  180. Bela Nagy & J. Doyne Farmer & Quan M. Bui & Jessika E. Trancik, 2012. "Statistical Basis for Predicting Technological Progress," Papers 1207.1463, arXiv.org.
  181. Muller-Furstenberger, Georg & Stephan, Gunter, 2007. "Integrated assessment of global climate change with learning-by-doing and energy-related research and development," Energy Policy, Elsevier, vol. 35(11), pages 5298-5309, November.
  182. Desroches, Louis-Benoit & Ganeshalingam, Mohan, 2015. "The dynamics of incremental costs of efficient television display technologies," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 562-574.
  183. Komendantova, Nadejda & Patt, Anthony & Williges, Keith, 2011. "Solar power investment in North Africa: Reducing perceived risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4829-4835.
  184. Anderson, Dennis & Leach, Matthew, 2004. "Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen," Energy Policy, Elsevier, vol. 32(14), pages 1603-1614, September.
  185. Bramoulle, Yann & Olson, Lars J., 2002. "Pollution Abatement Under Learning By Doing With Heterogeneous Costs," Working Papers 28583, University of Maryland, Department of Agricultural and Resource Economics.
  186. Harashima, Taiji, 2011. "A Model of Total Factor Productivity Built on Hayek’s View of Knowledge: What Really Went Wrong with Socialist Planned Economies?," MPRA Paper 29107, University Library of Munich, Germany.
  187. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
  188. Lin, Boqiang & Li, Jianglong, 2015. "Analyzing cost of grid-connection of renewable energy development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1373-1382.
  189. Pettersson, Fredrik, 2007. "Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear programming approach," Energy Policy, Elsevier, vol. 35(4), pages 2412-2425, April.
  190. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
  191. Kypreos, Socrates & Turton, Hal, 2011. "Climate change scenarios and Technology Transfer Protocols," Energy Policy, Elsevier, vol. 39(2), pages 844-853, February.
  192. Arbuthnott, Katherine D. & Dolter, Brett, 2013. "Escalation of commitment to fossil fuels," Ecological Economics, Elsevier, vol. 89(C), pages 7-13.
  193. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
  194. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
  195. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
  196. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
  197. Weisser, Daniel, 2004. "Costing electricity supply scenarios: A case study of promoting renewable energy technologies on Rodriguez, Mauritius," Renewable Energy, Elsevier, vol. 29(8), pages 1319-1347.
  198. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
  199. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.
  200. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
  201. Turton, Hal, 2008. "ECLIPSE: An integrated energy-economy model for climate policy and scenario analysis," Energy, Elsevier, vol. 33(12), pages 1754-1769.
  202. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
  203. Arias-Gaviria, Jessica & van der Zwaan, Bob & Kober, Tom & Arango-Aramburo, Santiago, 2017. "The prospects for Small Hydropower in Colombia," Renewable Energy, Elsevier, vol. 107(C), pages 204-214.
  204. Seung-Rae Kim, 2005. "Uncertainty, Learning, and Optimal Technological Portfolios: A Dynamic General Equilibrium Approach to Climate Change," Computing in Economics and Finance 2005 54, Society for Computational Economics.
  205. Malte Schwoon, 2006. "A Tool to Optimize the Initial Distribution of Hydrogen Filling Stations," Working Papers FNU-110, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
  206. Weisser, Daniel, 2004. "On the economics of electricity consumption in small island developing states: a role for renewable energy technologies?," Energy Policy, Elsevier, vol. 32(1), pages 127-140, January.
  207. Harashima, Taiji, 2009. "A Theory of Total Factor Productivity and the Convergence Hypothesis: Workers’ Innovations as an Essential Element," MPRA Paper 15508, University Library of Munich, Germany.
  208. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
  209. Nakata, Toshihiko & Sato, Takemi & Wang, Hao & Kusunoki, Tomoya & Furubayashi, Takaaki, 2011. "Modeling technological learning and its application for clean coal technologies in Japan," Applied Energy, Elsevier, vol. 88(1), pages 330-336, January.
  210. Harashima, Taiji, 2012. "A Theory of Intelligence and Total Factor Productivity: Value Added Reflects the Fruits of Fluid Intelligence," MPRA Paper 43151, University Library of Munich, Germany.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.