IDEAS home Printed from
   My bibliography  Save this article

Changing the view of wind power development: More than "bricolage"


  • Hendry, Chris
  • Harborne, Paul


Understanding innovation depends at root on good qualitative descriptions. This paper re-assesses the role of "bricolage", and the extent of science-based R&D and experience-based learning, in the development of the Danish wind turbine system. It argues that the competition between these two opposed frames of reference was never conclusively settled, but involved a reassertion of science-based R&D, which was ultimately decisive for long-term success. This adds a dimension to the received account by showing the persistence of contested collective frames of reference as a driving force across the technology life cycle. At the same time, a more nuanced account of these two learning processes enhances theorisation of the innovation process by showing a learning sequence and interplay of modes that is diametrically at odds with the conventional stylised model of the experience curve.

Suggested Citation

  • Hendry, Chris & Harborne, Paul, 2011. "Changing the view of wind power development: More than "bricolage"," Research Policy, Elsevier, vol. 40(5), pages 778-789, June.
  • Handle: RePEc:eee:respol:v:40:y:2011:i:5:p:778-789

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hendry, Chris & Harborne, Paul & Brown, James, 2010. "So what do innovating companies really get from publicly funded demonstration projects and trials? innovation lessons from solar photovoltaics and wind," Energy Policy, Elsevier, vol. 38(8), pages 4507-4519, August.
    2. Jensen, Morten Berg & Johnson, Bjorn & Lorenz, Edward & Lundvall, Bengt Ake, 2007. "Forms of knowledge and modes of innovation," Research Policy, Elsevier, vol. 36(5), pages 680-693, June.
    3. Brown, James & Hendry, Chris, 2009. "Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics," Energy Policy, Elsevier, vol. 37(7), pages 2560-2573, July.
    4. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    5. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    6. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters,in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626 National Bureau of Economic Research, Inc.
    7. Garud, Raghu & Karnoe, Peter, 2003. "Bricolage versus breakthrough: distributed and embedded agency in technology entrepreneurship," Research Policy, Elsevier, vol. 32(2), pages 277-300, February.
    8. Robertson, Paul L. & Patel, Parimal R., 2007. "New wine in old bottles: Technological diffusion in developed economies," Research Policy, Elsevier, vol. 36(5), pages 708-721, June.
    9. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    10. Kamp, Linda M. & Smits, Ruud E. H. M. & Andriesse, Cornelis D., 2004. "Notions on learning applied to wind turbine development in the Netherlands and Denmark," Energy Policy, Elsevier, vol. 32(14), pages 1625-1637, September.
    11. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    12. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    13. Kirner, Eva & Kinkel, Steffen & Jaeger, Angela, 2009. "Innovation paths and the innovation performance of low-technology firms--An empirical analysis of German industry," Research Policy, Elsevier, vol. 38(3), pages 447-458, April.
    14. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    15. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press, vol. 13(5), pages 815-849, October.
    16. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    17. Santamara, Llus & Nieto, Mara Jess & Barge-Gil, Andrs, 2009. "Beyond formal R&D: Taking advantage of other sources of innovation in low- and medium-technology industries," Research Policy, Elsevier, vol. 38(3), pages 507-517, April.
    18. Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
    19. Baker, Ted & Miner, Anne S. & Eesley, Dale T., 2003. "Improvising firms: bricolage, account giving and improvisational competencies in the founding process," Research Policy, Elsevier, vol. 32(2), pages 255-276, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    2. Webb, Janette, 2015. "Improvising innovation in UK urban district heating: The convergence of social and environmental agendas in Aberdeen," Energy Policy, Elsevier, vol. 78(C), pages 265-272.
    3. Pansera, Mario & Owen, Richard, 2015. "Framing resource-constrained innovation at the ‘bottom of the pyramid’: Insights from an ethnographic case study in rural Bangladesh," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 300-311.
    4. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    5. Arne Martin Fevolden & Lars Coenen & Teis Hansen & Antje Klitkou, 2017. "The Role of Trials and Demonstration Projects in the Development of a Sustainable Bioeconomy," Sustainability, MDPI, Open Access Journal, vol. 9(3), pages 1-15, March.
    6. Marco Bettiol & Vladi Finotto & Eleonora Di Maria & Stefano Micelli, 2014. "The hidden side of innovation: why tinkerers matter," Working Papers 08, Department of Management, Università Ca' Foscari Venezia.
    7. Garud, Raghu & Gehman, Joel & Giuliani, Antonio Paco, 2014. "Contextualizing entrepreneurial innovation: A narrative perspective," Research Policy, Elsevier, vol. 43(7), pages 1177-1188.
    8. Gregory F. Nemet & Martina Kraus & Vera Zipperer, 2016. "The Valley of Death, the Technology Pork Barrel, and Public Support for Large Demonstration Projects," Discussion Papers of DIW Berlin 1601, DIW Berlin, German Institute for Economic Research.
    9. Bento, Nuno & Fontes, Margarida, 2015. "The construction of a new technological innovation system in a follower country: Wind energy in Portugal," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 197-210.
    10. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    11. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:40:y:2011:i:5:p:778-789. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.