IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v161y2020ics0040162520311008.html
   My bibliography  Save this article

How deployment policies affect innovation in complementary technologies—evidence from the German energy transition

Author

Listed:
  • Sinsel, Simon R.
  • Markard, Jochen
  • Hoffmann, Volker H.

Abstract

The transition in the electricity sector has entered a new phase, in which the complementary interplay of different technologies is key for the future functioning of the sector. A key question in this regard is how deployment policies for clean technologies such as wind and solar PV affect innovation in complementary technologies such as battery storage. We present a qualitative study from the German power sector, in which we investigate the impact of the feed-in tariff for renewable energy generation, on two complementary technologies: consumer and grid connected battery systems. We find direct and indirect effects of the feed-in tariff. Indirect effects are primarily about positive expectations regarding the future progression of the transition. As deployment policies drive this progression, providers of complementary technologies interpret these changes as promising signals for their business. Direct effects differ for consumer and grid connected batteries. We find that innovation in consumer battery systems is disincentivized by some deployment policy features, while there are no such effects for grid connected batteries. When re-designing deployment policies for the next stage of the energy transition, it is important to take their effects on complementary technologies into account, or to develop specific policies targeting complementary innovation.

Suggested Citation

  • Sinsel, Simon R. & Markard, Jochen & Hoffmann, Volker H., 2020. "How deployment policies affect innovation in complementary technologies—evidence from the German energy transition," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:tefoso:v:161:y:2020:i:c:s0040162520311008
    DOI: 10.1016/j.techfore.2020.120274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162520311008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendry, Chris & Harborne, Paul, 2011. "Changing the view of wind power development: More than "bricolage"," Research Policy, Elsevier, vol. 40(5), pages 778-789, June.
    2. Kern, Florian & Rogge, Karoline S. & Howlett, Michael, 2019. "Policy mixes for sustainability transitions: New approaches and insights through bridging innovation and policy studies," Research Policy, Elsevier, vol. 48(10).
    3. Smith, Adrian & Raven, Rob, 2012. "What is protective space? Reconsidering niches in transitions to sustainability," Research Policy, Elsevier, vol. 41(6), pages 1025-1036.
    4. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    5. Taylor, Margaret, 2008. "Beyond technology-push and demand-pull: Lessons from California's solar policy," Energy Economics, Elsevier, vol. 30(6), pages 2829-2854, November.
    6. Solangi, K.H. & Islam, M.R. & Saidur, R. & Rahim, N.A. & Fayaz, H., 2011. "A review on global solar energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2149-2163, May.
    7. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    8. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    9. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    10. Anna Grandori & Santi Furnari, 2009. "Types of Complementarity, Combinative Organization Forms and Structural Heterogeneity: Beyond Discrete Structural Alternatives," Chapters, in: Mario Morroni (ed.), Corporate Governance, Organization and the Firm, chapter 4, Edward Elgar Publishing.
    11. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    12. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    13. Ron Adner & Rahul Kapoor, 2010. "Value creation in innovation ecosystems: how the structure of technological interdependence affects firm performance in new technology generations," Strategic Management Journal, Wiley Blackwell, vol. 31(3), pages 306-333, March.
    14. Kemp, René & Pontoglio, Serena, 2011. "The innovation effects of environmental policy instruments — A typical case of the blind men and the elephant?," Ecological Economics, Elsevier, vol. 72(C), pages 28-36.
    15. Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.
    16. Saidur, R. & Islam, M.R. & Rahim, N.A. & Solangi, K.H., 2010. "A review on global wind energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1744-1762, September.
    17. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    18. Haley, Brendan, 2018. "Integrating structural tensions into technological innovation systems analysis: Application to the case of transmission interconnections and renewable electricity in Nova Scotia, Canada," Research Policy, Elsevier, vol. 47(6), pages 1147-1160.
    19. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    20. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    21. Franco Malerba, 2009. "Increase Learning, Break Knowledge Lock-ins and Foster Dynamic Complementarities: Evolutionary and System Perspectives on Technology Policy in Industrial Dynamics," Chapters, in: Dominique Foray (ed.), The New Economics of Technology Policy, chapter 4, Edward Elgar Publishing.
    22. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    23. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    24. Kubli, Merla & Loock, Moritz & Wüstenhagen, Rolf, 2018. "The flexible prosumer: Measuring the willingness to co-create distributed flexibility," Energy Policy, Elsevier, vol. 114(C), pages 540-548.
    25. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    26. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    27. Requate, Till, 2005. "Dynamic incentives by environmental policy instruments--a survey," Ecological Economics, Elsevier, vol. 54(2-3), pages 175-195, August.
    28. Pistorius, C. W. I. & Utterback, J. M., 1997. "Multi-mode interaction among technologies," Research Policy, Elsevier, vol. 26(1), pages 67-84, March.
    29. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    30. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    31. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    32. Davies, Andrew, 1996. "Innovation in Large Technical Systems: The Case of Telecommunications," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 5(4), pages 1143-1180.
    33. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    34. Cusumano, Michael A. & Mylonadis, Yiorgos & Rosenbloom, Richard S., 1992. "Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS over Beta," Business History Review, Cambridge University Press, vol. 66(1), pages 51-94, April.
    35. Mary Tripsas, 1997. "Unraveling The Process Of Creative Destruction: Complementary Assets And Incumbent Survival In The Typesetter Industry," Strategic Management Journal, Wiley Blackwell, vol. 18(S1), pages 119-142, July.
    36. Schmidt, Tobias S. & Sewerin, Sebastian, 2019. "Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries," Research Policy, Elsevier, vol. 48(10).
    37. Malhotra, Abhishek & Battke, Benedikt & Beuse, Martin & Stephan, Annegret & Schmidt, Tobias, 2016. "Use cases for stationary battery technologies: A review of the literature and existing projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 705-721.
    38. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    39. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.
    40. Markard, Jochen & Wirth, Steffen & Truffer, Bernhard, 2016. "Institutional dynamics and technology legitimacy – A framework and a case study on biogas technology," Research Policy, Elsevier, vol. 45(1), pages 330-344.
    41. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    42. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell, 2018. "Why homeowners strive for energy self-supply and how policy makers can influence them," Energy Policy, Elsevier, vol. 117(C), pages 423-433.
    43. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    44. Hoppmann, Joern & Huenteler, Joern & Girod, Bastien, 2014. "Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power," Research Policy, Elsevier, vol. 43(8), pages 1422-1441.
    45. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolo Barbieri & Alberto Marzucchi & Ugo Rizzo, 2021. "Green technologies, complementarities, and policy," SPRU Working Paper Series 2021-08, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. Stevens, Kelly A. & Tang, Tian & Hittinger, Eric, 2023. "Innovation in complementary energy technologies from renewable energy policies," Renewable Energy, Elsevier, vol. 209(C), pages 431-441.
    3. Bigerna, Simona & Micheli, Silvia & Polinori, Paolo, 2021. "New generation acceptability towards durability and repairability of products: Circular economy in the era of the 4th industrial revolution," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    4. Lana Ollier & Florence Metz & Alejandro Nuñez-Jimenez & Leonhard Späth & Johan Lilliestam, 2022. "The European 2030 climate and energy package: do domestic strategy adaptations precede EU policy change?," Policy Sciences, Springer;Society of Policy Sciences, vol. 55(1), pages 161-184, March.
    5. He, Yubing & Lin, Ting & Zhang, Si, 2023. "Does complementary technology within an ecosystem affect disruptive innovation? Evidence from Chinese electric vehicle listed firms," Technology in Society, Elsevier, vol. 74(C).
    6. Mäkitie, Tuukka & Hanson, Jens & Steen, Markus & Hansen, Teis & Andersen, Allan Dahl, 2022. "Complementarity formation mechanisms in technology value chains," Research Policy, Elsevier, vol. 51(7).
    7. Roberts, Cameron & Greene, Jenna & Nemet, Gregory F., 2023. "Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    8. Schleich, Joachim & Schuler, Johannes & Pfaff, Matthias & Frank, Regine, 2021. "Renewable rebound: Empirical evidence from household electricity tariff switching," Working Papers "Sustainability and Innovation" S07/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    9. Löhr, Meike & Mattes, Jannika, 2022. "Facing transition phase two: Analysing actor strategies in a stagnating acceleration phase," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    10. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    3. Rogge, Karoline S. & Schleich, Joachim, 2018. "Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany," Research Policy, Elsevier, vol. 47(9), pages 1639-1654.
    4. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    5. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    6. Mäkitie, Tuukka & Hanson, Jens & Steen, Markus & Hansen, Teis & Andersen, Allan Dahl, 2022. "Complementarity formation mechanisms in technology value chains," Research Policy, Elsevier, vol. 51(7).
    7. Hedeler, Barbara & Hellsmark, Hans & Söderholm, Patrik, 2023. "Policy mixes and policy feedback: Implications for green industrial growth in the Swedish biofuels industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    9. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. Schmidt, Tobias S. & Sewerin, Sebastian, 2019. "Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries," Research Policy, Elsevier, vol. 48(10).
    11. Karoline S. Rogge & Elisabeth Dütschke, 2017. "Exploring Perceptions of the Credibility of Policy Mixes: The Case of German Manufacturers of Renewable Power Generation Technologies," SPRU Working Paper Series 2017-23, SPRU - Science Policy Research Unit, University of Sussex Business School.
    12. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    13. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    14. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    15. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    16. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    17. Quitzow, Rainer, 2015. "Assessing policy strategies for the promotion of environmental technologies: A review of India's National Solar Mission," Research Policy, Elsevier, vol. 44(1), pages 233-243.
    18. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    19. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61.
    20. Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:161:y:2020:i:c:s0040162520311008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.