IDEAS home Printed from
   My bibliography  Save this article

Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands


  • Weiss, Martin
  • Dittmar, Lars
  • Junginger, Martin
  • Patel, Martin K.
  • Blok, Kornelis


High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers produced and sold in the Netherlands between 1981 and 2006. For the most dominant boiler type on the Dutch market, i.e., condensing gas combi boilers, we identify learning rates of 14±1% for the average price and 16±8% for the additional price relative to non-condensing devices. Economies of scale, competitive sourcing of boiler components, and improvements in boiler assembly are among the main drivers behind the observed price decline. The net present value of condensing gas combi boilers shows an overall increasing trend. Purchasing in 2006 a gas boiler of this type instead of a non-condensing device generates a net present value of 970 EUR (Euro) and realizes CO2 (carbon dioxide) emission savings at negative costs of -120 EUR per tonne CO2. We attribute two-thirds of the improvements in the cost-benefit performance of condensing gas combi boilers to technological learning and one-third to a combination of external effects and governmental policies.

Suggested Citation

  • Weiss, Martin & Dittmar, Lars & Junginger, Martin & Patel, Martin K. & Blok, Kornelis, 2009. "Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands," Energy Policy, Elsevier, vol. 37(8), pages 2962-2976, August.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:2962-2976

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    2. Weber, C & Gebhardt, B & Fahl, U, 2002. "Market transformation for energy efficient technologies — success factors and empirical evidence for gas condensing boilers," Energy, Elsevier, vol. 27(3), pages 287-315.
    3. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    4. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    5. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
    6. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    7. Train, Kenneth, 1985. "Discount rates in consumers' energy-related decisions: A review of the literature," Energy, Elsevier, vol. 10(12), pages 1243-1253.
    8. Meier, Alan K. & Whittier, Jack, 1983. "Consumer discount rates implied by purchases of energy-efficient refrigerators," Energy, Elsevier, vol. 8(12), pages 957-962.
    9. Y. Iwafune, 2000. "Technology Progress Dynamics of Compact Fluorescent Lamps," Working Papers ir00009, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    2. Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "An experimental study of a cylindrical multi-hole premixed burner for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 4150-4157.
    3. Klaassen, R.E. & Patel, M.K., 2013. "District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power)," Energy, Elsevier, vol. 54(C), pages 63-73.
    4. Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
    5. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    6. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2015. "The future of energy in Uzbekistan," Energy, Elsevier, vol. 85(C), pages 329-338.
    7. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:2962-2976. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.