IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i2p770-783.html
   My bibliography  Save this article

Analyzing price and efficiency dynamics of large appliances with the experience curve approach

Author

Listed:
  • Weiss, Martin
  • Patel, Martin K.
  • Junginger, Martin
  • Blok, Kornelis

Abstract

Large appliances are major power consumers in households of industrialized countries. Although their energy efficiency has been increasing substantially in past decades, still additional energy efficiency potentials exist. Energy policy that aims at realizing these potentials faces, however, growing concerns about possible adverse effects on commodity prices. Here, we address these concerns by applying the experience curve approach to analyze long-term price and energy efficiency trends of three wet appliances (washing machines, laundry dryers, and dishwashers) and two cold appliances (refrigerators and freezers). We identify a robust long-term decline in both specific price and specific energy consumption of large appliances. Specific prices of wet appliances decline at learning rates (LR) of 29±8% and thereby much faster than those of cold appliances (LR of 9±4%). Our results demonstrate that technological learning leads to substantial price decline, thus indicating that the introduction of novel and initially expensive energy efficiency technologies does not necessarily imply adverse price effects in the long term. By extending the conventional experience curve approach, we find a steady decline in the specific energy consumption of wet appliances (LR of 20-35%) and cold appliances (LR of 13-17%). Our analysis suggests that energy policy might be able to bend down energy experience curves.

Suggested Citation

  • Weiss, Martin & Patel, Martin K. & Junginger, Martin & Blok, Kornelis, 2010. "Analyzing price and efficiency dynamics of large appliances with the experience curve approach," Energy Policy, Elsevier, vol. 38(2), pages 770-783, February.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:2:p:770-783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00757-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    2. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    3. Bass, Frank M, 1980. "The Relationship between Diffusion Rates, Experience Curves, and Demand Elasticities for Consumer Durable Technological Innovations," The Journal of Business, University of Chicago Press, vol. 53(3), pages 51-67, July.
    4. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    5. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
    6. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    7. Dale, Larry & Antinori, Camille & McNeil, Michael & McMahon, James E. & Sydny Fujita, K., 2009. "Retrospective evaluation of appliance price trends," Energy Policy, Elsevier, vol. 37(2), pages 597-605, February.
    8. Sue Bowden & Avner Offer, 1994. "Household appliances and the use of time: the United States and Britain since the 1920s," Economic History Review, Economic History Society, vol. 47(4), pages 725-748, November.
    9. Schiellerup, P., 2002. "An examination of the effectiveness of the EU minimum standard on cold appliances: the British case," Energy Policy, Elsevier, vol. 30(4), pages 327-332, March.
    10. John A. ''Skip'' Laitner & Alan H. Sanstad, 2004. "Learning-by-doing on both the demand and the supply sides: implications for electric utility investments in a Heuristic model," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 2(1/2), pages 142-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hueppe, Christian & Geppert, Jasmin & Moenninghoff-Juessen, Julia & Wolff, Lena & Stamminger, Rainer & Paul, Andreas & Elsner, Andreas & Vrabec, Jadran & Wagner, Hendrik & Hoelscher, Heike & Becker, W, 2021. "Investigating the real life energy consumption of refrigeration appliances in Germany: Are present policies sufficient?," Energy Policy, Elsevier, vol. 155(C).
    2. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    3. Kelly, Geoff, 2012. "Sustainability at home: Policy measures for energy-efficient appliances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6851-6860.
    4. Patrick Moriarty & Damon Honnery, 2019. "Energy Efficiency or Conservation for Mitigating Climate Change?," Energies, MDPI, vol. 12(18), pages 1-17, September.
    5. Scott, Michael J. & Daly, Don S. & Hathaway, John E. & Lansing, Carina S. & Liu, Ying & McJeon, Haewon C. & Moss, Richard H. & Patel, Pralit L. & Peterson, Marty J. & Rice, Jennie S. & Zhou, Yuyu, 2015. "Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model," Energy, Elsevier, vol. 90(P2), pages 1682-1694.
    6. Chang, Yusang & Lee, Jinsoo & Yoon, Hyerim, 2012. "Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook," Energy Policy, Elsevier, vol. 50(C), pages 154-160.
    7. Siderius, Hans-Paul, 2013. "The role of experience curves for setting MEPS for appliances," Energy Policy, Elsevier, vol. 59(C), pages 762-772.
    8. Gerke, Brian F. & McNeil, Michael A. & Tu, Thomas, 2017. "The International Database of Efficient Appliances (IDEA): A new tool to support appliance energy-efficiency deployment," Applied Energy, Elsevier, vol. 205(C), pages 453-464.
    9. McNeil, Michael A. & Bojda, Nicholas, 2012. "Cost-effectiveness of high-efficiency appliances in the U.S. residential sector: A case study," Energy Policy, Elsevier, vol. 45(C), pages 33-42.
    10. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
    11. Theofano Fotiou & Alessia de Vita & Pantelis Capros, 2019. "Economic-Engineering Modelling of the Buildings Sector to Study the Transition towards Deep Decarbonisation in the EU," Energies, MDPI, vol. 12(14), pages 1-28, July.
    12. Harrington, Lloyd & Aye, Lu & Fuller, Bob, 2018. "Impact of room temperature on energy consumption of household refrigerators: Lessons from analysis of field and laboratory data," Applied Energy, Elsevier, vol. 211(C), pages 346-357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
    2. Weiss, Martin & Dittmar, Lars & Junginger, Martin & Patel, Martin K. & Blok, Kornelis, 2009. "Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands," Energy Policy, Elsevier, vol. 37(8), pages 2962-2976, August.
    3. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    4. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    5. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    6. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    7. Komendantova, Nadejda & Patt, Anthony & Williges, Keith, 2011. "Solar power investment in North Africa: Reducing perceived risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4829-4835.
    8. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    9. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    10. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Desroches, Louis-Benoit & Ganeshalingam, Mohan, 2015. "The dynamics of incremental costs of efficient television display technologies," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 562-574.
    12. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    13. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    14. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    15. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    16. Lecca, Patrizio & McGregor, Peter G. & Swales, Kim J. & Tamba, Marie, 2017. "The Importance of Learning for Achieving the UK's Targets for Offshore Wind," Ecological Economics, Elsevier, vol. 135(C), pages 259-268.
    17. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.
    18. Martinsen, Thomas, 2011. "Technology learning in a small open economy--The systems, modelling and exploiting the learning effect," Energy Policy, Elsevier, vol. 39(5), pages 2361-2372, May.
    19. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
    20. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:2:p:770-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.