IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp439-452.html
   My bibliography  Save this article

Relating R&D and investment policies to CCS market diffusion through two-factor learning

Author

Listed:
  • Lohwasser, Richard
  • Madlener, Reinhard

Abstract

Carbon capture and storage (CCS) has the potential to play a major role in the stabilization of anthropogenic greenhouse gases. To develop the capture technology from its current demonstration phase towards commercial maturity, significant funding is directed to CCS, such as the EU’s €4.5bn NER300 fund. However, we know little about how this funding relates to market diffusion of CCS. This paper addresses that question. We initially review past learning effects from both capacity installations and R&D efforts for a similar technology using the concept of two-factor learning. We apply the obtained learning-by-doing and learning-by-searching rates to CCS in the electricity market model Hector, which simulates 19 European countries hourly until 2040, to understand the impact of learning and associated policies on CCS market diffusion. We evaluate the effectiveness of policies addressing learning-by-doing and learning-by-searching by relating the policy budget to the realized CCS capacity and find that, at lower policy cost, both methods are about equally effective. At higher spending levels, policies promoting learning-by-doing are more effective. Overall, policy effectiveness increases in low CO2 price scenarios, but the CO2 price still remains the key prerequisite for the economic competitiveness, even with major policy support.

Suggested Citation

  • Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:439-452
    DOI: 10.1016/j.enpol.2012.09.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    2. Edward S. Rubin & Sonia Yeh & David A. Hounshell & Margaret R. Taylor, 2004. "Experience curves for power plant emission control technologies," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 2(1/2), pages 52-69.
    3. Harmsen - van Hout, M.J.W. & Dellaert, B.G.C. & Herings, P.J.J., 2008. "Behavorial effects in individual decisions of network formation," Research Memorandum 019, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    5. Otto, Vincent M. & Reilly, John, 2008. "Directed technical change and the adoption of CO2 abatement technology: The case of CO2 capture and storage," Energy Economics, Elsevier, vol. 30(6), pages 2879-2898, November.
    6. Jamasb, T. & Köhler, J., 2007. "Learning Curves For Energy Technology and Policy Analysis: A Critical Assessment," Cambridge Working Papers in Economics 0752, Faculty of Economics, University of Cambridge.
    7. Jonathan Kohler, Michael Grubb, David Popp and Ottmar Edenhofer, 2006. "The Transition to Endogenous Technical Change in Climate-Economy Models: A Technical Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 17-56.
    8. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    9. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
    10. Bosetti, Valentina & Tavoni, Massimo, 2009. "Uncertain R&D, backstop technology and GHGs stabilization," Energy Economics, Elsevier, vol. 31(Supplemen), pages 18-26.
    11. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    12. Riahi, Keywan & Rubin, Edward S. & Schrattenholzer, Leo, 2004. "Prospects for carbon capture and sequestration technologies assuming their technological learning," Energy, Elsevier, vol. 29(9), pages 1309-1318.
    13. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    14. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    15. Richard Lohwasser & Reinhard Madlener, 2009. "Simulation of the European Electricity Market and CCS Development with the HECTOR Model," FCN Working Papers 6/2009, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    16. Harmsen - van Hout, M.J.W. & Herings, P.J.J. & Dellaert, B.G.C., 2006. "The structure of online consumer communication networks," Research Memorandum 028, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    17. Tooraj Jamasb, 2007. "Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies," The Energy Journal, , vol. 28(3), pages 51-72, July.
    18. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard & Claude Thonet, 2000. "Endogenous learning in world post-Kyoto scenarios: application of the POLES model under adaptive expectations," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 222-248.
    19. Kypreos, Socrates, 2007. "A MERGE model with endogenous technological change and the cost of carbon stabilization," Energy Policy, Elsevier, vol. 35(11), pages 5327-5336, November.
    20. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    21. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    22. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    23. Joachim Lang & Reinhard Madlener, 2010. "Relevance of Risk Capital and Margining for the Valuation of Power Plants: Cash Requirements for Credit Risk Mitigation," FCN Working Papers 1/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    24. Griliches, Zvi, 1998. "R&D and Productivity," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226308869.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    2. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    5. Tobias Wiesnethal & Arnaud Mercier & Burkhard Schade & H. Petric & Lazlo Szabo, 2010. "Quantitative Assessment of the Impact of the Strategic Energy Technology Plan on the European Power Sector," JRC Research Reports JRC61065, Joint Research Centre.
    6. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    7. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    8. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    9. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    10. Saheed Bello & David M Reiner, 2024. "Experience curves for electrolysis technologies," Working Papers EPRG2420, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    12. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).
    14. Bello, S. & Reiner, 2024. "Experience Curves for Electrolysis Technologies," Cambridge Working Papers in Economics 2476, Faculty of Economics, University of Cambridge.
    15. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
    16. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    17. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    18. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    19. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
    20. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:439-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.