IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v35y2007i11p5327-5336.html
   My bibliography  Save this article

A MERGE model with endogenous technological change and the cost of carbon stabilization

Author

Listed:
  • Kypreos, Socrates

Abstract

No abstract is available for this item.

Suggested Citation

  • Kypreos, Socrates, 2007. "A MERGE model with endogenous technological change and the cost of carbon stabilization," Energy Policy, Elsevier, vol. 35(11), pages 5327-5336, November.
  • Handle: RePEc:eee:enepol:v:35:y:2007:i:11:p:5327-5336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(07)00234-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kypreos, Socrates, 2005. "Modeling experience curves in MERGE (model for evaluating regional and global effects)," Energy, Elsevier, vol. 30(14), pages 2721-2737.
    2. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    3. Neij, L, 1999. "Cost dynamics of wind power," Energy, Elsevier, vol. 24(5), pages 375-389.
    4. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    5. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, December.
    6. Manne, Alan S. & Barreto, Leonardo, 2004. "Learn-by-doing and carbon dioxide abatement," Energy Economics, Elsevier, vol. 26(4), pages 621-633, July.
    7. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    8. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    9. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    2. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    3. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    4. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    5. Gu, Gaoxiang & Wang, Zheng & Wu, Leying, 2021. "Carbon emission reductions under global low-carbon technology transfer and its policy mix with R&D improvement," Energy, Elsevier, vol. 216(C).
    6. Frédéric Babonneau & Ahmed Badran & Maroua Benlahrech & Alain Haurie & Maxime Schenckery & Marc Vielle, 2021. "Economic assessment of the development of CO2 direct reduction technologies in long-term climate strategies of the Gulf countries," Climatic Change, Springer, vol. 165(3), pages 1-18, April.
    7. Babonneau, Frédéric & Benlahrech, Maroua & Haurie, Alain, 2022. "Transition to zero-net emissions for Qatar: A policy based on Hydrogen and CO2 capture & storage development," Energy Policy, Elsevier, vol. 170(C).
    8. Yoshua Bengio & Prateek Gupta & Dylan Radovic & Maarten Scholl & Andrew Williams & Christian Schroeder de Witt & Tianyu Zhang & Yang Zhang, 2022. "(Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach for Climate Finance and Risk Assessment," Papers 2205.00666, arXiv.org.
    9. Adriana Marcucci & Socrates Kypreos & Evangelos Panos, 2017. "The road to achieving the long-term Paris targets: energy transition and the role of direct air capture," Climatic Change, Springer, vol. 144(2), pages 181-193, September.
    10. Zou, Chen & Huang, Yongchun & Hu, Shiliang & Huang, Zhan, 2023. "Government participation in low-carbon technology transfer: An evolutionary game study," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    11. Tobias Wiesnethal & Arnaud Mercier & Burkhard Schade & H. Petric & Lazlo Szabo, 2010. "Quantitative Assessment of the Impact of the Strategic Energy Technology Plan on the European Power Sector," JRC Research Reports JRC61065, Joint Research Centre (Seville site).
    12. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations," Resource and Energy Economics, Elsevier, vol. 31(2), pages 123-137, May.
    13. Kypreos, Socrates & Turton, Hal, 2011. "Climate change scenarios and Technology Transfer Protocols," Energy Policy, Elsevier, vol. 39(2), pages 844-853, February.
    14. Turton, Hal, 2008. "ECLIPSE: An integrated energy-economy model for climate policy and scenario analysis," Energy, Elsevier, vol. 33(12), pages 1754-1769.
    15. Hritonenko, Natali & Yatsenko, Yuri, 2012. "Energy substitutability and modernization of energy-consuming technologies," Energy Economics, Elsevier, vol. 34(5), pages 1548-1556.
    16. Marcucci, Adriana & Panos, Evangelos & Kypreos, Socrates & Fragkos, Panagiotis, 2019. "Probabilistic assessment of realizing the 1.5 °C climate target," Applied Energy, Elsevier, vol. 239(C), pages 239-251.
    17. Carraro, Carlo & Duval, Romain & Bosetti, Valentina & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climat," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
    18. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
    19. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    20. Kypreos, Socrates, 2012. "From the Copenhagen Accord to efficient technology protocols," Energy Policy, Elsevier, vol. 44(C), pages 341-353.
    21. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    2. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    3. Kumbaroglu, Gürkan & Karali, Nihan & ArIkan, YIldIz, 2008. "CO2, GDP and RET: An aggregate economic equilibrium analysis for Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2694-2708, July.
    4. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    5. Bosetti, Valentina & Carraro, Carlo & Galeotti, Marzio, 2006. "Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control," Climate Change Modelling and Policy Working Papers 12050, Fondazione Eni Enrico Mattei (FEEM).
    6. Kelly, David L & Kolstad, Charles D, 2001. "Solving Infinite Horizon Growth Models with an Environmental Sector," Computational Economics, Springer;Society for Computational Economics, vol. 18(2), pages 217-231, October.
    7. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    8. Marcucci, Adriana & Panos, Evangelos & Kypreos, Socrates & Fragkos, Panagiotis, 2019. "Probabilistic assessment of realizing the 1.5 °C climate target," Applied Energy, Elsevier, vol. 239(C), pages 239-251.
    9. Bohringer, Christoph & Loschel, Andreas & Rutherford, Thomas F., 2007. "Decomposing the integrated assessment of climate change," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 683-702, February.
    10. Durand-Lasserve, Olivier & Pierru, Axel & Smeers, Yves, 2010. "Uncertain long-run emissions targets, CO2 price and global energy transition: A general equilibrium approach," Energy Policy, Elsevier, vol. 38(9), pages 5108-5122, September.
    11. Barreto, Leonardo & Kypreos, Socrates, 2004. "Emissions trading and technology deployment in an energy-systems "bottom-up" model with technology learning," European Journal of Operational Research, Elsevier, vol. 158(1), pages 243-261, October.
    12. Marian Leimbach & Anselm Schultes & Lavinia Baumstark & Anastasis Giannousakis & Gunnar Luderer, 2017. "Solution algorithms for regional interactions in large-scale integrated assessment models of climate change," Annals of Operations Research, Springer, vol. 255(1), pages 29-45, August.
    13. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    14. Bahn, Olivier & Edwards, Neil R. & Knutti, Reto & Stocker, Thomas F., 2011. "Energy policies avoiding a tipping point in the climate system," Energy Policy, Elsevier, vol. 39(1), pages 334-348, January.
    15. Leimbach, Marian & Edenhofer, Ottmar, 2007. "Technological spillovers within multi-region models: Intertemporal optimization beyond the Negishi approach," Economic Modelling, Elsevier, vol. 24(2), pages 272-294, March.
    16. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    17. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    18. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    19. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    20. Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:35:y:2007:i:11:p:5327-5336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.