IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v25y2003i1p35-57.html
   My bibliography  Save this article

Gross world product and consumption in a global warming model with endogenous technological change

Author

Listed:
  • Gerlagh, Reyer
  • van der Zwaan, Bob

Abstract

No abstract is available for this item.

Suggested Citation

  • Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
  • Handle: RePEc:eee:resene:v:25:y:2003:i:1:p:35-57
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928-7655(02)00020-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reyer Gerlagh & Bob van der Zwaan & Marjan Hofkes & Ger Klaassen, 2004. "Impacts of CO 2 -Taxes in an Economy with Niche Markets and Learning-by-Doing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 367-394, July.
    2. Jorgenson, Dale W. & Goettle, Richard J. & Ho, Mun S. & Wilcoxen, Peter J., 2013. "Energy, the Environment and US Economic Growth," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 477-552, Elsevier.
    3. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    4. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    5. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    6. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    7. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    8. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    9. Stephen C Peck & Thomas J. Teisberg, 1992. "CETA: A Model for Carbon Emissions Trajectory Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-78.
    10. Dowlatabadi, Hadi, 1998. "Sensitivity of climate change mitigation estimates to assumptions about technical change," Energy Economics, Elsevier, vol. 20(5-6), pages 473-493, December.
    11. Anderson, Dennis & Bird, Catherine D, 1992. "Carbon Accumulations and Technical Progress--A Simulation Study of Costs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(1), pages 1-29, February.
    12. Lawrence H. Goulder & Koshy Mathai, 1998. "Optimal CO2 Abatement in the Presence of Induced Technological Change," NBER Working Papers 6494, National Bureau of Economic Research, Inc.
    13. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    14. Carraro, Carlo & Galeotti, Marzio, 1997. "Economic growth, international competitiveness and environmental protection: R & D and innovation strategies with the WARM model," Energy Economics, Elsevier, vol. 19(1), pages 2-28, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    2. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    3. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    4. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    5. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    6. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.
    7. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    8. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
    9. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "Optimal carbon taxes in carbon-constrained China: A logistic-induced energy economic hybrid model," Energy, Elsevier, vol. 69(C), pages 345-356.
    10. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    11. van der Zwaan, Bob & Gerlagh, Reyer, 2006. "Climate sensitivity uncertainty and the necessity to transform global energy supply," Energy, Elsevier, vol. 31(14), pages 2571-2587.
    12. Marzio Galeotti & Carlo Carraro, 2004. "Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model," Working Papers 2004.152, Fondazione Eni Enrico Mattei.
    13. Carraro, Carlo & Gerlagh, Reyer & Zwaan, Bob van der, 2003. "Endogenous technical change in environmental macroeconomics," Resource and Energy Economics, Elsevier, vol. 25(1), pages 1-10, February.
    14. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    15. Peterson, Sonja, 2005. "Technischer Fortschritt im DART-Modell," Open Access Publications from Kiel Institute for the World Economy 3806, Kiel Institute for the World Economy (IfW Kiel).
    16. Florentine Schwark, 2010. "Economics of Endogenous Technical Change in CGE Models - The Role of Gains from Specialization," CER-ETH Economics working paper series 10/130, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    17. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    18. Reyer Gerlagh & Bob van der Zwaan & Marjan Hofkes & Ger Klaassen, 2004. "Impacts of CO 2 -Taxes in an Economy with Niche Markets and Learning-by-Doing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 367-394, July.
    19. Reyer Gerlagh & Marjan W. Hofkes, 2004. "Time Profile of Climate Change Stabilization Policy," Working Papers 2004.139, Fondazione Eni Enrico Mattei.
    20. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future," NBER Working Papers 20783, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:25:y:2003:i:1:p:35-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.