IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v92y2014icp66-77.html
   My bibliography  Save this article

Methodological advancements in Life Cycle Process Design: A preliminary outlook

Author

Listed:
  • Fazeni, Karin
  • Lindorfer, Johannes
  • Prammer, Heinz

Abstract

This paper deals with the application of Life Cycle Assessment (LCA) methodology for process design, and presents the initial findings of this analysis qualitatively. The work identifies a need for a methodological development of Life Cycle Process Design (LCPD). This is underpinned by a broad literature review. The literature review shows that the application of LCA as an environmental design instrument is recognized in literature. In contrast to that there is hardly any hint which role Life Cycle Costing (LCC) could play within environmental process design. Most interesting in this line is, how LCA and LCC can be combined for environmental process design to be finally the core instruments of LCPD. The applicability of LCA and LCC within LCPD is shown on the example of a novel biorefinery process under development. Both instruments (LCA and LCC) are already applied during basic process development in this work, parallel to laboratory research. The aim is to identify potential environmental threats at an early stage of process design and also to give a hint on economic feasibility. Additionally a trade-off between environmental and economic issues can be drawn out. On the basis of this analysis the role of LCA during process development is highlighted as well as difficulties and challenges are emphasized. One of the major obstacles is data availability for LCA as well as LCC in the basic design stage of a biotechnological process. The findings of this paper serve as basis for the methodological development of LCPD. It is emphasized that conducting LCA and LCC during basic process development can reveal some relevant action areas for process engineers, which may influence technical as well as economic feasibility. The results presented have to be understood as a first outlook and provide key aspects for future research on the topic of accompanying basic process research projects with LCA and LCC to support future sustainable process design.

Suggested Citation

  • Fazeni, Karin & Lindorfer, Johannes & Prammer, Heinz, 2014. "Methodological advancements in Life Cycle Process Design: A preliminary outlook," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 66-77.
  • Handle: RePEc:eee:recore:v:92:y:2014:i:c:p:66-77
    DOI: 10.1016/j.resconrec.2014.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914001803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    2. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    3. Hettinga, W.G. & Junginger, H.M. & Dekker, S.C. & Hoogwijk, M. & McAloon, A.J. & Hicks, K.B., 2009. "Understanding the reductions in US corn ethanol production costs: An experience curve approach," Energy Policy, Elsevier, vol. 37(1), pages 190-203, January.
    4. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    5. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    6. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
    7. Ajanovic, A. & Haas, R., 2010. "Economic challenges for the future relevance of biofuels in transport in EU countries," Energy, Elsevier, vol. 35(8), pages 3340-3348.
    8. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1613-1619, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mitchell K. van der Hulst & Mark A. J. Huijbregts & Niels van Loon & Mirjam Theelen & Lucinda Kootstra & Joseph D. Bergesen & Mara Hauck, 2020. "A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1234-1249, December.
    2. Khang, Dinh S. & Tan, Raymond R. & Uy, O. Manuel & Promentilla, Michael Angelo B. & Tuan, Phan D. & Abe, Naoya & Razon, Luis F., 2017. "Design of experiments for global sensitivity analysis in life cycle assessment: The case of biodiesel in Vietnam," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 12-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    2. Diogo, V. & Koomen, E. & Kuhlman, T., 2015. "An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study," Agricultural Systems, Elsevier, vol. 139(C), pages 1-16.
    3. Andrew Adewale Alola & Uju Violet Alola, 2018. "Agricultural land usage and tourism impact on renewable energy consumption among Coastline Mediterranean Countries," Energy & Environment, , vol. 29(8), pages 1438-1454, December.
    4. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    5. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    6. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    7. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    8. Eugenio Demartini & Anna Gaviglio & Marco Gelati & Daniele Cavicchioli, 2016. "The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy," Energies, MDPI, vol. 9(11), pages 1-23, November.
    9. Mirzabaev, Alisher & Guta, Dawit & Goedecke, Jann & Gaur, Varun & Börner, Jan & Virchow, Detlef & Denich, Manfred & von Braun, Joachim, 2014. "Bioenergy, Food Security and Poverty Reduction: Mitigating tradeoffs and promoting synergies along the Water- Energy-Food Security Nexus," Working Papers 180421, University of Bonn, Center for Development Research (ZEF).
    10. Anelise Rahmeier Seyffarth, 2016. "The Impact of Rising Ethanol Production on the Brazilian Market for Basic Food Commodities: An Econometric Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 511-536, July.
    11. Zhu, Tong & Curtis, John & Clancy, Matthew, 2019. "Promoting agricultural biogas and biomethane production: Lessons from cross-country studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    13. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    14. Vik, Jostein, 2020. "The agricultural policy trilemma: On the wicked nature of agricultural policy making," Land Use Policy, Elsevier, vol. 99(C).
    15. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    16. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    17. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    18. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    19. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2012. "Der Markt für Bioenergie 2012," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(Supplemen), pages 1-20, February.
    20. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:92:y:2014:i:c:p:66-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.