IDEAS home Printed from
   My bibliography  Save this article

Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations


  • de Jong, Sierk
  • Hoefnagels, Ric
  • Wetterlund, Elisabeth
  • Pettersson, Karin
  • Faaij, André
  • Junginger, Martin


This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations (i.e. supply chains with an intermediate pre-treatment step to reduce biomass transport cost). The model assessed biofuel production levels ranging from 1 to 150PJa−1 in the context of the existing Swedish forest industry. Biofuel was produced from forestry biomass using hydrothermal liquefaction and hydroprocessing. Simultaneous implementation of all cost reduction strategies yielded minimum biofuel production costs of 18.1–18.2 € GJ−1 at biofuel production levels between 10 and 75PJa−1. Limiting the economies of scale was shown to cause the largest cost increase (+0–12%, increasing with biofuel production level), followed by disabling integration benefits (+1–10%, decreasing with biofuel production level) and allowing unimodal truck transport only (+0–6%, increasing with biofuel production level). Distributed supply chain configurations were introduced once biomass supply became increasingly dispersed, but did not provide a significant cost benefit (<1%). Disabling the benefits of integration favors large-scale centralized production, while intermodal transport networks positively affect the benefits of economies of scale. As biofuel production costs still exceeds the price of fossil transport fuels in Sweden after implementation of all cost reduction strategies, policy support and stimulation of further technological learning remains essential to achieve cost parity with fossil fuels for this feedstock/technology combination in this spatiotemporal context.

Suggested Citation

  • de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
  • Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:1055-1070
    DOI: 10.1016/j.apenergy.2017.03.109

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
    2. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    3. Cobuloglu, Halil I. & Büyüktahtakın, İ. Esra, 2015. "Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts," Applied Energy, Elsevier, vol. 140(C), pages 418-434.
    4. Kudakasseril Kurian, Jiby & Raveendran Nair, Gopu & Hussain, Abid & Vijaya Raghavan, G.S., 2013. "Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 205-219.
    5. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    6. Natarajan, Karthikeyan & Leduc, Sylvain & Pelkonen, Paavo & Tomppo, Erkki & Dotzauer, Erik, 2014. "Optimal locations for second generation Fischer Tropsch biodiesel production in Finland," Renewable Energy, Elsevier, vol. 62(C), pages 319-330.
    7. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    8. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    9. Isaksson, Johan & Pettersson, Karin & Mahmoudkhani, Maryam & Åsblad, Anders & Berntsson, Thore, 2012. "Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill – Consequences for mass and energy balances and global CO2 emissions," Energy, Elsevier, vol. 44(1), pages 420-428.
    10. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    11. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    12. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    13. Steven Rose & Elmar Kriegler & Ruben Bibas & Katherine Calvin & Alexander Popp & Detlef Vuuren & John Weyant, 2014. "Bioenergy in energy transformation and climate management," Climatic Change, Springer, vol. 123(3), pages 477-493, April.
    14. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    2. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    3. Diogo, V. & Koomen, E. & Kuhlman, T., 2015. "An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study," Agricultural Systems, Elsevier, vol. 139(C), pages 1-16.
    4. Andrew Adewale Alola & Uju Violet Alola, 2018. "Agricultural land usage and tourism impact on renewable energy consumption among Coastline Mediterranean Countries," Energy & Environment, , vol. 29(8), pages 1438-1454, December.
    5. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    6. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    7. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    8. Eugenio Demartini & Anna Gaviglio & Marco Gelati & Daniele Cavicchioli, 2016. "The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy," Energies, MDPI, vol. 9(11), pages 1-23, November.
    9. Fazeni, Karin & Lindorfer, Johannes & Prammer, Heinz, 2014. "Methodological advancements in Life Cycle Process Design: A preliminary outlook," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 66-77.
    10. Mirzabaev, Alisher & Guta, Dawit & Goedecke, Jann & Gaur, Varun & Börner, Jan & Virchow, Detlef & Denich, Manfred & von Braun, Joachim, 2014. "Bioenergy, Food Security and Poverty Reduction: Mitigating tradeoffs and promoting synergies along the Water- Energy-Food Security Nexus," Working Papers 180421, University of Bonn, Center for Development Research (ZEF).
    11. Zhu, Tong & Curtis, John & Clancy, Matthew, 2019. "Promoting agricultural biogas and biomethane production: Lessons from cross-country studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    13. Vik, Jostein, 2020. "The agricultural policy trilemma: On the wicked nature of agricultural policy making," Land Use Policy, Elsevier, vol. 99(C).
    14. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    16. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    17. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    18. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    19. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2012. "Der Markt für Bioenergie 2012," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(Supplemen), pages 1-20, February.
    20. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:1055-1070. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.