IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/43151.html
   My bibliography  Save this paper

A Theory of Intelligence and Total Factor Productivity: Value Added Reflects the Fruits of Fluid Intelligence

Author

Listed:
  • Harashima, Taiji

Abstract

In this paper, a theory of total factor productivity (TFP) that incorporates a model of intelligence is formulated and described. In particular, the fluid intelligence of ordinary workers is emphasized as an important element in TFP because such workers have the intelligence to innovate, even though their innovations are minor. Nevertheless, these innovations are essential for production because they solve many small but unexpected problems that ordinary workers must address. The TFP model is based on item response theory, which is widely used in psychology and psychometrics. TFP is assumed to be an increasing function of ordinary workers’ fluid intelligence, without which production is virtually impossible. Therefore, the model suggests that TFP is derived from the fruits of human intelligence.

Suggested Citation

  • Harashima, Taiji, 2012. "A Theory of Intelligence and Total Factor Productivity: Value Added Reflects the Fruits of Fluid Intelligence," MPRA Paper 43151, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:43151
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/43151/1/MPRA_paper_43151.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Mikael Lindahl & Alan B. Krueger, 2001. "Education for Growth: Why and for Whom?," Journal of Economic Literature, American Economic Association, vol. 39(4), pages 1101-1136, December.
    3. Gary S. Becker, 1962. "Investment in Human Capital: A Theoretical Analysis," Journal of Political Economy, University of Chicago Press, vol. 70, pages 1-9.
    4. Patrick Criqui & Jean-Marie Martin & Leo Schrattenholzer & Tom Kram & Luc Soete & Adriaan Van Zon, 2000. "Energy technology dynamics," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 65-103.
    5. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    6. Yin-Wong Cheung & Antonio Garcia Pascual, 2004. "Testing for output convergence: a re-examination," Oxford Economic Papers, Oxford University Press, vol. 56(1), pages 45-63, January.
    7. Eelke Wiersma, 2007. "Conditions That Shape the Learning Curve: Factors That Increase the Ability and Opportunity to Learn," Management Science, INFORMS, vol. 53(12), pages 1903-1915, December.
    8. Norman Keith Womer, 1984. "Estimating Learning Curves from Aggregate Monthly Data," Management Science, INFORMS, vol. 30(8), pages 982-992, August.
    9. Papineau, Maya, 2006. "An economic perspective on experience curves and dynamic economies in renewable energy technologies," Energy Policy, Elsevier, vol. 34(4), pages 422-432, March.
    10. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 407-443.
    11. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 107(2), pages 407-437.
    12. Benhabib, Jess & Spiegel, Mark M., 1994. "The role of human capital in economic development evidence from aggregate cross-country data," Journal of Monetary Economics, Elsevier, vol. 34(2), pages 143-173, October.
    13. Prescott, Edward C, 1998. "Needed: A Theory of Total Factor Productivity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 525-551, August.
    14. Burton A. Weisbrod, 1966. "Investing in Human Capital," Journal of Human Resources, University of Wisconsin Press, vol. 1(1), pages 5-21.
    15. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
    16. Lazear, Edward, 2003. "Firm-Specific Human Capital: A Skill-Weights Approach," IZA Discussion Papers 813, Institute for the Study of Labor (IZA).
    17. Abramovitz, Moses, 1986. "Catching Up, Forging Ahead, and Falling Behind," The Journal of Economic History, Cambridge University Press, vol. 46(02), pages 385-406, June.
    18. Edward P. Lazear, 2003. "Firm-Specific Human Capital: A Skill-Weights Approach," NBER Working Papers 9679, National Bureau of Economic Research, Inc.
    19. Harashima, Taiji, 2011. "A Model of Total Factor Productivity Built on Hayek’s View of Knowledge: What Really Went Wrong with Socialist Planned Economies?," MPRA Paper 29107, University Library of Munich, Germany.
    20. Romer, Paul M, 1987. "Growth Based on Increasing Returns Due to Specialization," American Economic Review, American Economic Association, vol. 77(2), pages 56-62, May.
    21. Dudley, Leonard, 1972. "Learning and Productivity Change in Metal Products," American Economic Review, American Economic Association, vol. 62(4), pages 662-669, September.
    22. Womer, N Keith & Patterson, J Wayne, 1983. "Estimation and Testing of Learning Curves," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 265-272, October.
    23. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
    24. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    25. Gary P. Pisano & Richard M.J. Bohmer & Amy C. Edmondson, 2001. "Organizational Differences in Rates of Learning: Evidence from the Adoption of Minimally Invasive Cardiac Surgery," Management Science, INFORMS, vol. 47(6), pages 752-768, June.
    26. Martin B. Zimmerman, 1982. "Learning Effects and the Commercialization of New Energy Technologies: The Case of Nuclear Power," Bell Journal of Economics, The RAND Corporation, vol. 13(2), pages 297-310, Autumn.
    27. Jacob Mincer, 1958. "Investment in Human Capital and Personal Income Distribution," Journal of Political Economy, University of Chicago Press, vol. 66, pages 281-281.
    28. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, Oxford University Press, vol. 120(2), pages 517-549.
    29. Baumol, William J, 1986. "Productivity Growth, Convergence, and Welfare: What the Long-run Data Show," American Economic Review, American Economic Association, vol. 76(5), pages 1072-1085, December.
    30. Jakub Growiec, 2008. "A new class of production functions and an argument against purely labor-augmenting technical change," International Journal of Economic Theory, The International Society for Economic Theory, vol. 4(4), pages 483-502.
    31. Harashima, Taiji, 2009. "A Theory of Total Factor Productivity and the Convergence Hypothesis: Workers’ Innovations as an Essential Element," MPRA Paper 15508, University Library of Munich, Germany.
    32. Marvin B. Lieberman, 1984. "The Learning Curve and Pricing in the Chemical Processing Industries," RAND Journal of Economics, The RAND Corporation, vol. 15(2), pages 213-228, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harashima, Taiji, 2017. "Wage Inequality and Innovative Intelligence-Biased Technological Change," MPRA Paper 82337, University Library of Munich, Germany.
    2. Harashima, Taiji, 2014. "Division of Work and Fragmented Information: An Explanation for the Diminishing Marginal Product of Labor," MPRA Paper 56301, University Library of Munich, Germany.
    3. Harashima, Taiji, 2017. "A Theory on the Economic Impacts of Immigration," MPRA Paper 78821, University Library of Munich, Germany.

    More about this item

    Keywords

    Total factor productivity; Intelligence; Innovation; Item response theory; Experience curve effect;

    JEL classification:

    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration
    • O20 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - General
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43151. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.