IDEAS home Printed from
MyIDEAS: Log in (now much improved!)

Citations for "Jump-robust volatility estimation using nearest neighbor truncation"

by Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
in new window

  1. Audrino, Francesco & Fengler, Matthias R., 2015. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 46-63.
  2. Thierry Ane & Carole Metais, 2010. "Jump Distribution Characteristics: Evidence from European Stock Markets," International Journal of Business and Economics, College of Business and College of Finance, Feng Chia University, Taichung, Taiwan, vol. 9(1), pages 1-22, April.
  3. Vander Elst, Harry & Veredas, David, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de Estadística.
  4. Potiron, Yoann & Mykland, Per A., 2017. "Estimation of integrated quadratic covariation with endogenous sampling times," Journal of Econometrics, Elsevier, vol. 197(1), pages 20-41.
  5. Francesco Audrino & Simon D. Knaus, 2016. "Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
  6. Hansen, Peter Reinhard, 2015. "A martingale decomposition of discrete Markov chains," Economics Letters, Elsevier, vol. 133(C), pages 14-18.
  7. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
  8. Bent Jesper Christensen & Rasmus T. Varneskov, 2016. "Dynamic Global Currency Hedging," CREATES Research Papers 2016-03, Department of Economics and Business Economics, Aarhus University.
  9. repec:ipg:wpaper:2014-053 is not listed on IDEAS
  10. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
  11. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
  12. Marcel Aloy & Gilles Truchis, 2016. "Optimal Estimation Strategies for Bivariate Fractional Cointegration Systems and the Co-persistence Analysis of Stock Market Realized Volatilities," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 83-104, June.
  13. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
  14. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Indirect inference with time series observed with error," CREATES Research Papers 2014-57, Department of Economics and Business Economics, Aarhus University.
  15. Jan Hanousek & Evzen Kocenda & Jan Novotny, 2014. "Price jumps on European stock markets," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 14(1), pages 10-22, March.
  16. Simon Clinet & Yoann Potiron, 2017. "Testing if the market microstructure noise is a function of the limit order book," Papers 1709.02502,
  17. Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
  18. repec:dau:papers:123456789/6805 is not listed on IDEAS
  19. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
  20. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
  21. Chevillon, Guillaume & Hecq , Alain & Laurent, Sébastien, 2015. "Long Memory Through Marginalization of Large Systems and Hidden Cross-Section Dependence," ESSEC Working Papers WP1507, ESSEC Research Center, ESSEC Business School.
  22. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
  23. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
  24. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
  25. Simon Clinet & Yoann Potiron, 2017. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Papers 1701.01185,, revised Jul 2017.
  26. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
  27. Prateek Sharma & Swati Sharma, 2015. "Forecasting gains of robust realized variance estimators: evidence from European stock markets," Economics Bulletin, AccessEcon, vol. 35(1), pages 61-69.
  28. Piotr Fiszeder & Grzegorz Perczak, 2013. "A new look at variance estimation based on low, high and closing prices taking into account the drift," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 456-481, November.
  29. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters,in: Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427 Edward Elgar Publishing.
  30. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
  31. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
  32. Li, Shaoyu & Zheng, Tingguo, 2017. "Modeling spot rate using a realized stochastic volatility model with level effect and dynamic drift☆," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 200-221.
  33. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
  34. Virgil DAMIAN & Cosmin – Octavian CEPOI, 2016. "Volatility Estimators With High-Frequency Data From Bucharest Stock Exchange," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 247-264.
  35. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
  36. Éric Jacquier & Cédric Okou, 2013. "Disentangling Continuous Volatility from Jumps in Long-Run Risk-Return Relationships," CIRANO Working Papers 2013s-14, CIRANO.
  37. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic Asset Price Jumps and the Performance of High Frequency Tests and Measures," Papers 1708.09520,
  38. Gnabo, Jean-Yves & Hvozdyk, Lyudmyla & Lahaye, Jérôme, 2014. "System-wide tail comovements: A bootstrap test for cojump identification on the S&P 500, US bonds and currencies," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 147-174.
  39. Ruiz, Esther & Trucíos, Carlos & Hotta, Luiz, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.
  40. Hui Qu & Ping Ji, 2016. "Modeling Realized Volatility Dynamics with a Genetic Algorithm," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 434-444, 08.
  41. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2015. "Volatility transmission in global financial markets," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 3-18.
  42. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, Elsevier.
  43. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1650007-01 .
  44. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
  45. Jozef Barunik & Lukas Vacha, 2016. "Do co-jumps impact correlations in currency markets?," Papers 1602.05489,, revised Apr 2017.
  46. Fengler, M.R. & Mammen, E. & Vogt, M., 2015. "Specification and structural break tests for additive models with applications to realized variance data," Journal of Econometrics, Elsevier, vol. 188(1), pages 196-218.
  47. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
  48. Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
  49. repec:cte:wsrepe:es142416 is not listed on IDEAS
  50. Filip Žikeš & Jozef Baruník, 2015. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 185-226.
  51. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01442618, HAL.
  52. Asai, M. & McAleer, M.J., 2015. "The Impact of Jumps and Leverage in Forecasting Co-Volatility," Econometric Institute Research Papers EI 2015-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  53. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
  54. Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
  55. Stefan Lyocsa & Peter Molnar & Igor Fedorko, 2016. "Forecasting Exchange Rate Volatility: The Case of the Czech Republic, Hungary and Poland," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(5), pages 453-475, October.
  56. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2016. "Bootstrapping high-frequency jump tests," CIRANO Working Papers 2016s-24, CIRANO.
  57. Marina Theodosiou & Filip Zikes, 2011. "A Comprehensive Comparison of Alternative Tests for Jumps in Asset Prices," Working Papers 2011-2, Central Bank of Cyprus.
  58. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
  59. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
  60. Aitor Ciarreta & Peru Muniainy & Ainhoa Zarraga, 2017. "Modelling Realized Volatility in Electricity Spot Prices: New insights and Application to the Japanese Electricity Market," ISER Discussion Paper 0991, Institute of Social and Economic Research, Osaka University.
  61. Vortelinos, Dimitrios I. & Saha, Shrabani, 2016. "The impact of political risk on return, volatility and discontinuity: Evidence from the international stock and foreign exchange markets," Finance Research Letters, Elsevier, vol. 17(C), pages 222-226.
  62. Trucíos, Carlos & Hotta, Luiz K., 2016. "Bootstrap prediction in univariate volatility models with leverage effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 91-103.
  63. repec:ebl:ecbull:eb-14-00886 is not listed on IDEAS
  64. Alain Hecq & Sébastien Laurent & Franz C. Palm, 2011. "Common Intraday Periodicity," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(2), pages 325-353, 2012 20 1.
  65. Nolte, Ingmar & Xu, Qi, 2015. "The economic value of volatility timing with realized jumps," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 45-59.
  66. Xin Zhang & Donggyu Kim & Yazhen Wang, 2016. "Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets," Econometrics, MDPI, Open Access Journal, vol. 4(3), pages 1-26, August.
  67. Nick Taylor, 2016. "Realised Variance Forecasting Under Box-Cox Transformations," Bristol Accounting and Finance Discussion Papers 16/4, School of Economics, Finance, and Management, University of Bristol, UK.
  68. Jacod, Jean & Mykland, Per A., 2015. "Microstructure noise in the continuous case: Approximate efficiency of the adaptive pre-averaging method," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2910-2936.
  69. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
  70. Ying Jiang & Shamim Ahmed & Xiaoquan Liu, 2017. "Volatility forecasting in the Chinese commodity futures market with intraday data," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 1123-1173, May.
  71. Christophe Boucher & Gilles de Truchis & Elena Dumitrescu & Sessi Tokpavi, 2017. "Testing for Extreme Volatility Transmission with Realized Volatility Measures," EconomiX Working Papers 2017-20, University of Paris West - Nanterre la Defense, EconomiX.
  72. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
  73. repec:eee:finlet:v:22:y:2017:i:c:p:42-48 is not listed on IDEAS
  74. Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
  75. Vasile George MARICA & Lucian Claudiu ANGHEL, 2015. "Sovereign Default Analysis through Extreme Events Identification," Management Dynamics in the Knowledge Economy Journal, College of Management, National University of Political Studies and Public Administration, vol. 3(2), pages 339-353, June.
  76. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
  77. Chin Wen CHEONG & Lee Min CHERNG & Grace Lee Ching YAP, 2016. "Heterogeneous Market Hypothesis Evaluations using Various Jump-Robust Realized Volatility," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 50-64, December.
  78. Boudt, Kris & Petitjean, Mikael, 2014. "Intraday liquidity dynamics and news releases around price jumps: Evidence from the DJIA stocks," Journal of Financial Markets, Elsevier, vol. 17(C), pages 121-149.
  79. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
  80. Jos\'e E. Figueroa-L\'opez & Cecilia Mancini, 2017. "Optimum thresholding using mean and conditional mean square error," Papers 1708.04339,
  81. Fang, Yan & Ielpo, Florian & Sévi, Benoît, 2012. "Empirical bias in intraday volatility measures," Finance Research Letters, Elsevier, vol. 9(4), pages 231-237.
  82. BOUSALAM, Issam & HAMZAOUI, Moustapha & ZOUHAYR, Otman, 2016. "Forecasting Daily Stock Volatility Using GARCH-CJ Type Models with Continuous and Jump Variation," MPRA Paper 69636, University Library of Munich, Germany.
  83. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
  84. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2016. "Common trends in global volatility," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 194-214.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.