IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.00905.html
   My bibliography  Save this paper

Data-driven fixed-point tuning for truncated realized variations

Author

Listed:
  • B. Cooper Boniece
  • Jos'e E. Figueroa-L'opez
  • Yuchen Han

Abstract

Many methods for estimating integrated volatility and related functionals of semimartingales in the presence of jumps require specification of tuning parameters for their use in practice. In much of the available theory, tuning parameters are assumed to be deterministic and their values are specified only up to asymptotic constraints. However, in empirical work and in simulation studies, they are typically chosen to be random and data-dependent, with explicit choices often relying entirely on heuristics. In this paper, we consider novel data-driven tuning procedures for the truncated realized variations of a semimartingale with jumps based on a type of random fixed-point iteration. Being effectively automated, our approach alleviates the need for delicate decision-making regarding tuning parameters in practice and can be implemented using information regarding sampling frequency alone. We demonstrate our methods can lead to asymptotically efficient estimation of integrated volatility and exhibit superior finite-sample performance compared to popular alternatives in the literature.

Suggested Citation

  • B. Cooper Boniece & Jos'e E. Figueroa-L'opez & Yuchen Han, 2023. "Data-driven fixed-point tuning for truncated realized variations," Papers 2311.00905, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2311.00905
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.00905
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    2. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    3. Mancini, Cecilia & Gobbi, Fabio, 2012. "Identifying The Brownian Covariation From The Co-Jumps Given Discrete Observations," Econometric Theory, Cambridge University Press, vol. 28(2), pages 249-273, April.
    4. Mancini, Cecilia, 2017. "Truncated Realized Covariance when prices have infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1998-2035.
    5. Jos'e E. Figueroa-L'opez & Bei Wu, 2020. "Kernel Estimation of Spot Volatility with Microstructure Noise Using Pre-Averaging," Papers 2004.01865, arXiv.org, revised Feb 2022.
    6. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    7. Barndorff-Nielsen, Ole E. & Shephard, Neil & Winkel, Matthias, 2006. "Limit theorems for multipower variation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 796-806, May.
    8. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    9. Figueroa-López, José E. & Mancini, Cecilia, 2019. "Optimum thresholding using mean and conditional mean squared error," Journal of Econometrics, Elsevier, vol. 208(1), pages 179-210.
    10. Viktor Todorov & George Tauchen, 2012. "The Realized Laplace Transform of Volatility," Econometrica, Econometric Society, vol. 80(3), pages 1105-1127, May.
    11. Kristensen, Dennis, 2010. "Nonparametric Filtering Of The Realized Spot Volatility: A Kernel-Based Approach," Econometric Theory, Cambridge University Press, vol. 26(1), pages 60-93, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Figueroa-López, José E. & Mancini, Cecilia, 2019. "Optimum thresholding using mean and conditional mean squared error," Journal of Econometrics, Elsevier, vol. 208(1), pages 179-210.
    2. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    3. Cuchiero, Christa & Teichmann, Josef, 2015. "Fourier transform methods for pathwise covariance estimation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 116-160.
    4. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    5. Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    7. Kim, Jihyun & Park, Joon & Wang, Bin, 2020. "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments," TSE Working Papers 20-1096, Toulouse School of Economics (TSE).
    8. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    9. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    10. José E. Figueroa-López & Jeffrey Nisen, 2019. "Second-order properties of thresholded realized power variations of FJA additive processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 431-474, October.
    11. José E. Figueroa-López & Cheng Li & Jeffrey Nisen, 2020. "Optimal iterative threshold-kernel estimation of jump diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 517-552, October.
    12. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    13. Hacène Djellout & Hui Jiang, 2018. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Post-Print hal-01147189, HAL.
    14. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    15. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    16. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    17. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    18. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    19. Jean Jacod, 2019. "Estimation of volatility in a high-frequency setting: a short review," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 351-385, December.
    20. Hacène Djellout & Hui Jiang, 2015. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Working Papers hal-01147189, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.00905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.