IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i5d10.1007_s10614-024-10633-1.html
   My bibliography  Save this article

Volatility Dynamics and Mixed Jump-GARCH Model Based Jump Detection in Financial Markets

Author

Listed:
  • Min Zhu

    (Shanghai Normal University)

  • Yuping Song

    (Shanghai Normal University)

  • Xin Zheng

    (Shanghai Normal University)

Abstract

In this paper, we introduce a novel parametric approach for detecting jumps in daily frequency data. Our jump detection method leverages the characteristics of volatility to distinguish the presence or absence of jumps. By specifying a model in terms of the mixture of GARCH and jump-GARCH, we identify jumps based on the posterior probability of states yielded by the fitted model. The EM algorithm is employed to resolve the parameters in the model. Through Monte Carlo experiments, we evaluate the performance of our parametric jump detection approach, the mixed jump-GARCH model, in comparison to an alternative test. The results indicate that our approach demonstrates superior overall performance of both sensitivity and reliability in jump detection than its benchmark models. Empirical evidence further supports these findings, particularly highlighting the mixed jump-GARCH model’s ability to identify several significant jumps associated with key events, such as the 2008 US financial crisis and the 2020 Covid-19 pandemic. Importantly, these jumps are ignored by the benchmark nonparametric test.

Suggested Citation

  • Min Zhu & Yuping Song & Xin Zheng, 2025. "Volatility Dynamics and Mixed Jump-GARCH Model Based Jump Detection in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 65(5), pages 2545-2577, May.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-024-10633-1
    DOI: 10.1007/s10614-024-10633-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10633-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10633-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    2. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    3. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    4. Jérôme Lahaye & Christopher Neely, 2020. "The Role of Jumps in Volatility Spillovers in Foreign Exchange Markets: Meteor Shower and Heat Waves Revisited," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 410-427, April.
    5. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    6. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    8. Cheng, Hung-Wen & Lo, Chien-Ling & Tsai, Jeffrey Tzuhao, 2020. "Model specification of conditional jump intensity: Evidence from S&P 500 returns and option prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    10. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    11. repec:hal:journl:peer-00741630 is not listed on IDEAS
    12. Nieuwland, Frederick G M C & Verschoor, Willem F C & Wolff, Christian C P, 1994. "Stochastic trends and jumps in EMS exchange rates," Journal of International Money and Finance, Elsevier, vol. 13(6), pages 699-727, December.
    13. Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely, 2011. "Jumps, cojumps and macro announcements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 893-921, September.
    14. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-389, July.
    15. Yi, Chae-Deug, 2020. "Jump probability using volatility periodicity filters in US Dollar/Euro exchange rates," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    16. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    17. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    18. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    19. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    20. Jiang, George J. & Yao, Tong, 2013. "Stock Price Jumps and Cross-Sectional Return Predictability," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(5), pages 1519-1544, October.
    21. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    22. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    23. Zhichao Liu & Feng Ma & Xunxiao Wang & Zean Xia, 2016. "Forecasting the realized volatility: the role of jumps," Applied Economics Letters, Taylor & Francis Journals, vol. 23(10), pages 736-739, July.
    24. González-Urteaga, Ana & Muga, Luis & Santamaria, Rafael, 2015. "Momentum and default risk. Some results using the jump component," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 185-193.
    25. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    26. Jean-François Bégin & Christian Dorion & Geneviève Gauthier, 2020. "Idiosyncratic Jump Risk Matters: Evidence from Equity Returns and Options," The Review of Financial Studies, Society for Financial Studies, vol. 33(1), pages 155-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    2. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    3. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    4. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    5. John M. Maheu & Thomas McCurdy, 2003. "News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns," CIRANO Working Papers 2003s-38, CIRANO.
    6. Hassan Zada & Huma Maqsood & Shakeel Ahmed & Muhammad Zeb Khan, 2023. "Information shocks, market returns and volatility: a comparative analysis of developed equity markets in Asia," SN Business & Economics, Springer, vol. 3(1), pages 1-22, January.
    7. Hassan Zada & Arshad Hassan & Wing-Keung Wong, 2021. "Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets," Economies, MDPI, vol. 9(2), pages 1-26, June.
    8. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    9. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
    10. Yeh, Jin-Huei & Yun, Mu-Shu, 2023. "Assessing jump and cojumps in financial asset returns with applications in futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    11. Zhang, Lei & Chen, Yan & Bouri, Elie, 2024. "Time-varying jump intensity and volatility forecasting of crude oil returns," Energy Economics, Elsevier, vol. 129(C).
    12. Zhou, Haigang & Zhu, John Qi, 2019. "Firm characteristics and jump dynamics in stock prices around earnings announcements," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    13. Chae-Deug, Yi, 2024. "Realized normal volatility and maximum outlying jumps in high frequency returns for Korean won–US Dollar," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    14. Nolte, Ingmar & Xu, Qi, 2015. "The economic value of volatility timing with realized jumps," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 45-59.
    15. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    16. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2018. "Crash Risk in Currency Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 137-170, February.
    17. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    18. Lee, Suzanne S. & Mykland, Per A., 2012. "Jumps in equilibrium prices and market microstructure noise," Journal of Econometrics, Elsevier, vol. 168(2), pages 396-406.
    19. Dinesh Gajurel & Biplob Chowdhury, 2021. "Realized Volatility, Jump and Beta: evidence from Canadian Stock Market," Applied Economics, Taylor & Francis Journals, vol. 53(55), pages 6376-6397, November.
    20. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2012. "Sources of Risk in Currency Returns," CEPR Discussion Papers 8745, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    Jumps detection; Gaussian mixture distribution; Jump-GARCH model; EM algorithm;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-024-10633-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.