IDEAS home Printed from https://ideas.repec.org/p/aim/wpaimx/1843.html

Volatility Estimation and Jump Detection for drift-diffusion Processes

Author

Abstract

Logarithms of prices of financial assets are conventionally assumed to follow drift-diffusion processes. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of nonzero drifts is an undeniable fact. The finite sample theory and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility and leads to a dramatic power loss of a class of jump identification procedures. We propose an alternative construction of volatility estimators and jump tests and observe significant improvement of both in the presence of nonnegligible drift. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log-returns of the NASDAQ stock price index.

Suggested Citation

  • Sébastien Laurent & Shuping Shi, 2018. "Volatility Estimation and Jump Detection for drift-diffusion Processes," AMSE Working Papers 1843, Aix-Marseille School of Economics, France.
  • Handle: RePEc:aim:wpaimx:1843
    as

    Download full text from publisher

    File URL: https://www.amse-aixmarseille.fr/sites/default/files/_dt/2012/wp_2018_-_nr_43.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    3. Nabil Bouamara & S'ebastien Laurent & Shuping Shi, 2023. "Sequential Cauchy Combination Test for Multiple Testing Problems with Financial Applications," Papers 2303.13406, arXiv.org, revised Jun 2023.
    4. Linyu Wang & Yifan Ji & Zhongxin Ni, 2024. "Which implied volatilities contain more information? Evidence from China," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1896-1919, April.
    5. Cui, Tianxiang & Suleman, Muhammad Tahir & Zhang, Hongwei, 2022. "Do the green bonds overreact to the COVID-19 pandemic?," Finance Research Letters, Elsevier, vol. 49(C).
    6. Chae-Deug, Yi, 2024. "Realized normal volatility and maximum outlying jumps in high frequency returns for Korean won–US Dollar," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    7. Yucheng Sun, 2024. "Testing for jumps with robust spot volatility estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(1), pages 79-104, February.
    8. Qiu, Yue & Wang, Zongrun & Xie, Tian & Zhang, Xinyu, 2021. "Forecasting Bitcoin realized volatility by exploiting measurement error under model uncertainty," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 179-201.
    9. Shuping Shi & Peter C. B. Phillips, 2022. "Econometric Analysis of Asset Price Bubbles," Cowles Foundation Discussion Papers 2331, Cowles Foundation for Research in Economics, Yale University.
    10. YI, Chae-Deug, 2023. "Exchange rate volatility and intraday jump probability with periodicity filters using a local robust variance," Finance Research Letters, Elsevier, vol. 55(PA).
    11. Li, Yifan & Nolte, Ingmar & Nolte, Sandra & Yu, Shifan, 2025. "Realized candlestick wicks," Journal of Econometrics, Elsevier, vol. 250(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aim:wpaimx:1843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gregory Cornu (email available below). General contact details of provider: https://edirc.repec.org/data/amseafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.