IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v32y2015icp3-18.html
   My bibliography  Save this article

Volatility transmission in global financial markets

Author

Listed:
  • Clements, A.E.
  • Hurn, A.S.
  • Volkov, V.V.

Abstract

This paper considers the transmission of volatility in global foreign exchange, equity and bond markets. Using a multivariate GARCH framework which includes measures of realised volatility as explanatory variables, significant volatility and news spillovers are found to occur on the same trading day between Japan, Europe, and the United States. All markets exhibit significant degrees of asymmetry in terms of the transmission of volatility associated with good and bad news. There are also strong links between diffusive volatilities in all three markets, whereas jump activity is only important within the equity markets. The results of this paper deepen our understanding of how news and volatility are propagated through global financial markets.

Suggested Citation

  • Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2015. "Volatility transmission in global financial markets," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 3-18.
  • Handle: RePEc:eee:empfin:v:32:y:2015:i:c:p:3-18
    DOI: 10.1016/j.jempfin.2014.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539814001273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2014.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Fleming & Jose A. Lopez, 1999. "Heat waves, meteor showers, and trading volume: an analysis of volatility spillovers in the U.S. Treasury market," Working Papers in Applied Economic Theory 99-09, Federal Reserve Bank of San Francisco.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    3. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    4. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-542, May.
    5. Abdul Hakim & Michael McAleer, 2010. "Modelling the interactions across international stock, bond and foreign exchange markets," Applied Economics, Taylor & Francis Journals, vol. 42(7), pages 825-850.
    6. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    7. Michael Ehrmann & Marcel Fratzscher & Roberto Rigobon, 2011. "Stocks, bonds, money markets and exchange rates: measuring international financial transmission," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 948-974, September.
    8. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    9. Heejoon Han & Dennis Kristensen, 2014. "Asymptotic Theory for the QMLE in GARCH-X Models With Stationary and Nonstationary Covariates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 416-429, July.
    10. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    11. Ito, Takatoshi & Roley, V. Vance, 1987. "News from the U.S. and Japan : Which moves the yen/dollar exchange rate?," Journal of Monetary Economics, Elsevier, vol. 19(2), pages 255-277, March.
    12. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    13. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    14. Kawakatsu, Hiroyuki, 2006. "Matrix exponential GARCH," Journal of Econometrics, Elsevier, vol. 134(1), pages 95-128, September.
    15. Robert F. Engle & Giampiero M. Gallo & Margherita Velucchi, 2012. "Volatility Spillovers in East Asian Financial Markets: A Mem-Based Approach," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 222-223, February.
    16. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
    17. Evans, Kevin P., 2011. "Intraday jumps and US macroeconomic news announcements," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2511-2527, October.
    18. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    19. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    20. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    21. Mardi Dungey & Luba Fakhrutdinova & Charles Goodhart, 2009. "After‐hours trading in equity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(2), pages 114-136, February.
    22. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    23. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    24. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    25. Christos Savva & Denise R Osborn & Len Gill, 2005. "Volatility, spillover Effects and Correlations in US and Major European Markets," Money Macro and Finance (MMF) Research Group Conference 2005 23, Money Macro and Finance Research Group.
    26. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk-realised semivariance," Economics Papers 2008-W02, Economics Group, Nuffield College, University of Oxford.
    27. Michael Melvin & Bettina Peiers Melvin, 2003. "The Global Transmission of Volatility in the Foreign Exchange Market," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 670-679, August.
    28. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Masuhr, 2017. "Volatility Transmission in Overlapping Trading Zones," CQE Working Papers 6717, Center for Quantitative Economics (CQE), University of Muenster.
    2. Abhinava Tripathi, 2021. "The Arrival of Information and Price Adjustment Across Extreme Quantiles: Global Evidence," IIM Kozhikode Society & Management Review, , vol. 10(1), pages 7-19, January.
    3. Andreas Masuhr, 2019. "Big in Japan: Global Volatility Transmission between Assets and Trading Places," CQE Working Papers 8119, Center for Quantitative Economics (CQE), University of Muenster.
    4. Xu, Yongdeng & Taylor, Nick & Lu, Wenna, 2018. "Illiquidity and volatility spillover effects in equity markets during and after the global financial crisis: An MEM approach," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 208-220.
    5. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2017. "Asymmetric volatility connectedness on the forex market," Journal of International Money and Finance, Elsevier, vol. 77(C), pages 39-56.
    6. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2017. "The kidnapping of Europe: High-order moments' transmission between developed and emerging markets," Emerging Markets Review, Elsevier, vol. 31(C), pages 96-115.
    7. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2017. "Asymmetry in spillover effects: Evidence for international stock index futures markets," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 94-111.
    8. Gannon, Gerard L. & Thuraisamy, Kannan S., 2017. "Sovereign risk and the impact of crisis: Evidence from Latin AmericaAuthor-Name: Batten, Jonathan A," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 328-350.
    9. Parhizgari, A.M. & Padungsaksawasdi, Chaiyuth, 2021. "Global equity market leadership positions through implied volatility measures," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 180-205.
    10. Klaus Grobys & Sami Vähämaa, 0. "Another look at value and momentum: volatility spillovers," Review of Quantitative Finance and Accounting, Springer, vol. 0, pages 1-21.
    11. Leonardo Badea & Daniel Ştefan Armeanu & Iulian Panait & Ştefan Cristian Gherghina, 2019. "A Markov Regime Switching Approach towards Assessing Resilience of Romanian Collective Investment Undertakings," Sustainability, MDPI, Open Access Journal, vol. 11(5), pages 1-24, March.
    12. Klaus Grobys & Sami Vähämaa, 2020. "Another look at value and momentum: volatility spillovers," Review of Quantitative Finance and Accounting, Springer, vol. 55(4), pages 1459-1479, November.
    13. Sanjay Sehgal & Mala Dutt, 2016. "Domestic and international information linkages between NSE Nifty spot and futures markets: an empirical study for India," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(3), pages 239-258, September.
    14. Balli, Faruk & de Bruin, Anne & Chowdhury, Md Iftekhar Hasan, 2019. "Spillovers and the determinants in Islamic equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    15. Luo, Jiawen & Wang, Shengquan, 2019. "The asymmetric high-frequency volatility transmission across international stock markets," Finance Research Letters, Elsevier, vol. 31(C), pages 104-109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerlach, Richard & Naimoli, Antonio & Storti, Giuseppe, 2018. "Time Varying Heteroskedastic Realized GARCH models for tracking measurement error bias in volatility forecasting," MPRA Paper 83893, University Library of Munich, Germany.
    2. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    3. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    4. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    6. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    7. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    8. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    9. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    10. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    11. Christoffersen, Peter & Feunou, Bruno & Jeon, Yoontae, 2015. "Option valuation with observable volatility and jump dynamics," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 101-120.
    12. Gong, Xu & Lin, Boqiang, 2019. "Modeling stock market volatility using new HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 194-211.
    13. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    14. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2016. "Common trends in global volatility," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 194-214.
    15. Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
    16. Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.
    17. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    18. Dinghai Xu, 2019. "A Study on Volatility Spurious Almost Integration Effect: A Threshold Realized GARCH Approach," Working Papers 1903, University of Waterloo, Department of Economics, revised Dec 2019.
    19. repec:uts:finphd:39 is not listed on IDEAS
    20. Hui Qu & Ping Ji, 2016. "Modeling Realized Volatility Dynamics with a Genetic Algorithm," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 434-444, August.
    21. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.

    More about this item

    Keywords

    GARCH; Realised volatility; Asymmetry; Jumps; Volatility transmission;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:32:y:2015:i:c:p:3-18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jempfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.