IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/18-13.html
   My bibliography  Save this paper

Asymptotic theory for the QMLE in GARCH-X models with stationary and non-stationary covariates

Author

Listed:
  • Heejoon Han

    (Institute for Fiscal Studies)

  • Dennis Kristensen

    () (Institute for Fiscal Studies and University College London)

Abstract

This paper investigates the asymptotic properties of the Gaussian quasi-maximum-likelihood estimators (QMLE's) of the GARCH model augmented by including an additional explanatory variable- the so-called GARCH-X model. The additional covariate is allowed to exhibit any degree of persistence as captured by its long-memory parameter dx; in particular, we allow for both stationary and non-stationary covariates. We show that the QMLE's of the parameters entering the volatility equation are consistent and mixed-normally distributed in large samples. The convergence rates and limiting distributions of the QMLE's depend on whether the regressor is stationary or not. However, standard inferential tools for the parameters are robust to the level of persistence of the regressor with t-statistics following standard Normal distributions in large sample irrespective of whether the regressor is stationary or not.

Suggested Citation

  • Heejoon Han & Dennis Kristensen, 2013. "Asymptotic theory for the QMLE in GARCH-X models with stationary and non-stationary covariates," CeMMAP working papers CWP18/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:18/13
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp181313.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
    2. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    3. Dominguez, Kathryn M., 1998. "Central bank intervention and exchange rate volatility1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 161-190, February.
    4. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    5. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    6. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    7. Giampiero Gallo & Barbara Pacini, 2000. "The effects of trading activity on market volatility," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 163-175.
    8. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2007. "A Model for Multivariate Non-negative Valued Processes in Financial Econometrics," Econometrics Working Papers Archive wp2007_16, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    9. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    10. Bollerslev, Tim & Melvin, Michael, 1994. "Bid--ask spreads and volatility in the foreign exchange market : An empirical analysis," Journal of International Economics, Elsevier, vol. 36(3-4), pages 355-372, May.
    11. Hodrick, Robert J., 1989. "Risk, uncertainty, and exchange rates," Journal of Monetary Economics, Elsevier, vol. 23(3), pages 433-459, May.
    12. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
    13. Escanciano, Juan Carlos, 2009. "Quasi-Maximum Likelihood Estimation Of Semi-Strong Garch Models," Econometric Theory, Cambridge University Press, vol. 25(02), pages 561-570, April.
    14. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    15. Anne Opschoor & Michel van der Wel & Dick van Dijk & Nick Taylor, 2011. "On the Effects of Private Information on Volatility," Tinbergen Institute Discussion Papers 11-077/4, Tinbergen Institute.
    16. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, "undated". "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
    17. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 85-107, March.
    18. Annastiina Silvennoinen & Timo Teräsvirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    19. Niklas Wagner & Terry A. Marsh, 2004. "Surprise Volume and Heteroskedasticity in Equity Market Returns," Econometrics 0409009, EconWPA.
    20. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    21. Han, Heejoon & Park, Joon Y., 2012. "ARCH/GARCH with persistent covariate: Asymptotic theory of MLE," Journal of Econometrics, Elsevier, vol. 167(1), pages 95-112.
    22. Kristensen, Dennis & Rahbek, Anders, 2005. "ASYMPTOTICS OF THE QMLE FOR A CLASS OF ARCH(q) MODELS," Econometric Theory, Cambridge University Press, vol. 21(05), pages 946-961, October.
    23. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    24. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    25. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
    26. Soosung Hwang & Steve Satchell, 2005. "GARCH model with cross-sectional volatility: GARCHX models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(3), pages 203-216.
    27. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Chen & Qiongxia Song, 2016. "Semi-parametric estimation and forecasting for exogenous log-GARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 93-112, March.
    2. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 16(1), pages 129-154.
    3. Rasmus Søndergaard Pedersen & Anders Rahbek, 2017. "Testing Garch-X Type Models," Discussion Papers 17-15, University of Copenhagen. Department of Economics.
    4. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
    5. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2015. "Volatility transmission in global financial markets," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 3-18.
    6. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    7. Agosto, Arianna & Cavaliere, Giuseppe & Kristensen, Dennis & Rahbek, Anders, 2016. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 640-663.
    8. Ming Chen & Qiongxia Song, 2016. "Semi-parametric estimation and forecasting for exogenous log-GARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 93-112, March.
    9. Francq, Christian & Thieu, Le Quyen, 2015. "Qml inference for volatility models with covariates," MPRA Paper 63198, University Library of Munich, Germany.
    10. Francq, Christian & Sucarrat, Genaro, 2017. "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 16-32.
    11. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Feb 2017.
    12. Byun, Sung Je, 2016. "The usefulness of cross-sectional dispersion for forecasting aggregate stock price volatility," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 162-180.
    13. Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
    14. Heejoon Han, 2016. "Quantile Dependence between Stock Markets and its Application in Volatility Forecasting," Papers 1608.07193, arXiv.org.
    15. Han, Heejoon & Park, Joon Y., 2014. "GARCH with omitted persistent covariate," Economics Letters, Elsevier, vol. 124(2), pages 248-254.
    16. Thieu, Le Quyen, 2016. "Equation by equation estimation of the semi-diagonal BEKK model with covariates," MPRA Paper 75582, University Library of Munich, Germany.
    17. Francq, Christian & Sucarrat, Genaro, 2015. "Equation-by-Equation Estimation of a Multivariate Log-GARCH-X Model of Financial Returns," MPRA Paper 67140, University Library of Munich, Germany.
    18. Conrad, Christian & Schienle, Melanie, 2015. "Misspecification Testing in GARCH-MIDAS Models," Working Papers 0597, University of Heidelberg, Department of Economics.
    19. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2016.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:18/13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.