IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v167y2012i1p95-112.html
   My bibliography  Save this article

ARCH/GARCH with persistent covariate: Asymptotic theory of MLE

Author

Listed:
  • Han, Heejoon
  • Park, Joon Y.

Abstract

The paper considers a volatility model which introduces a persistent, integrated or near-integrated, covariate to the standard GARCH(1, 1) model. For such a model, we derive the asymptotic theory of the quasi-maximum likelihood estimator. In particular, we establish consistency and obtain limit distribution. The limit distribution is generally non-Gaussian and represented as a functional of Brownian motions. However, it becomes Gaussian if the covariate has innovation uncorrelated with the squared innovation of the model or the volatility function is linear in parameter. We provide a simulation study to demonstrate the relevance and usefulness of our asymptotic theory.

Suggested Citation

  • Han, Heejoon & Park, Joon Y., 2012. "ARCH/GARCH with persistent covariate: Asymptotic theory of MLE," Journal of Econometrics, Elsevier, vol. 167(1), pages 95-112.
  • Handle: RePEc:eee:econom:v:167:y:2012:i:1:p:95-112 DOI: 10.1016/j.jeconom.2011.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407611002351
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Joon, 2003. "Weak Unit Roots," Working Papers 2003-17, Rice University, Department of Economics.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Hagiwara, May & Herce, Miguel A, 1999. "Endogenous Exchange Rate Volatility, Trading Volume and Interest Rate Differentials in a Model of Portfolio Selection," Review of International Economics, Wiley Blackwell, vol. 7(2), pages 202-218, May.
    4. Han, Heejoon & Park, Joon Y., 2008. "Time series properties of ARCH processes with persistent covariates," Journal of Econometrics, Elsevier, vol. 146(2), pages 275-292, October.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, pages 307-327.
    6. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
    7. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    8. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    11. Francq, Christian & Zakoian, Jean-Michel, 2007. "Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to zero," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1265-1284, September.
    12. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    13. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
    14. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    15. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    16. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    17. He, Changli & Ter svirta, Timo, 1999. "FOURTH MOMENT STRUCTURE OF THE GARCH(p,q) PROCESS," Econometric Theory, Cambridge University Press, vol. 15(06), pages 824-846, December.
    18. Park, Joon Y., 2002. "Nonstationary nonlinear heteroskedasticity," Journal of Econometrics, Elsevier, vol. 110(2), pages 383-415, October.
    19. Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle Estimation Of Arch Models," Econometric Theory, Cambridge University Press, vol. 17(03), pages 608-631, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasmus Søndergaard Pedersen & Anders Rahbek, 2017. "Testing Garch-X Type Models," Discussion Papers 17-15, University of Copenhagen. Department of Economics.
    2. Heejoon Han & Dennis Kristensen, 2014. "Asymptotic Theory for the QMLE in GARCH-X Models With Stationary and Nonstationary Covariates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 416-429, July.
    3. Ming Chen & Qiongxia Song, 2016. "Semi-parametric estimation and forecasting for exogenous log-GARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 93-112, March.
    4. Francq, Christian & Thieu, Le Quyen, 2015. "Qml inference for volatility models with covariates," MPRA Paper 63198, University Library of Munich, Germany.
    5. Han, Heejoon & Park, Joon Y., 2014. "GARCH with omitted persistent covariate," Economics Letters, Elsevier, vol. 124(2), pages 248-254.

    More about this item

    Keywords

    ARCH; GARCH; Persistent covariate; Maximum likelihood estimator; Asymptotic distribution theory;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:167:y:2012:i:1:p:95-112. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.