IDEAS home Printed from https://ideas.repec.org/p/mtl/montde/9911.html
   My bibliography  Save this paper

The Shape of the Risk Premium: Evidence from a Semiparametric Garch Model

Author

Listed:
  • LINTON, Olivier
  • PERRON, Benoît

Abstract

We examine the relationship between the risk premium on the S&P 500 index return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean EGARCH - model in which the conditional variance process is EGARCH while the conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500 excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic. Moreover, we find considerable persistence in the conditional variance as well as a leverage effect, as documented by others. Moreover, the shape of these relationships seems to be relatively stable over time.

Suggested Citation

  • LINTON, Olivier & PERRON, Benoît, 1999. "The Shape of the Risk Premium: Evidence from a Semiparametric Garch Model," Cahiers de recherche 9911, Universite de Montreal, Departement de sciences economiques.
  • Handle: RePEc:mtl:montde:9911
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1866/475
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    3. Backus, David K. & Gregory, Allan W. & Zin, Stanley E., 1989. "Risk premiums in the term structure : Evidence from artificial economies," Journal of Monetary Economics, Elsevier, vol. 24(3), pages 371-399, November.
    4. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
    5. Backus, David K & Gregory, Allan W, 1993. "Theoretical Relations between Risk Premiums and Conditional Variances," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 177-185, April.
    6. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    7. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    8. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    11. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    12. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    13. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. " Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
    14. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    15. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
    16. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    17. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    18. Abel, Andrew B., 1999. "Risk premia and term premia in general equilibrium," Journal of Monetary Economics, Elsevier, vol. 43(1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christensen, Bent Jesper & Dahl, Christian M. & Iglesias, Emma M., 2012. "Semiparametric inference in a GARCH-in-mean model," Journal of Econometrics, Elsevier, vol. 167(2), pages 458-472.
    2. Oliver Linton & Anisha Ghosh, 2007. "Consistent Estimation of the Risk-Return Tradeoff in the Presence of Measurement Error," FMG Discussion Papers dp605, Financial Markets Group.

    More about this item

    Keywords

    ARCH models; asset icing; backfitting; Fourier series; kernel; risk emium;

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montde:9911. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER) or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/demtlca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.