IDEAS home Printed from https://ideas.repec.org/p/aah/create/2013-19.html
   My bibliography  Save this paper

Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange

Author

Listed:
  • Asger Lunde

    () (Aarhus University and CREATES)

  • Kasper V. Olesen

    () (Aarhus University and CREATES)

Abstract

We explore intraday transaction records from NASDAQ OMX Commodities Europe from January 2006 to October 2013. We analyze empirical results for a selection of existing realized measures of volatility and incorporate them in a Realized GARCH framework for the joint modeling of returns and realized measures of volatility. An influential bias in these measures is documented, which motivates the use of a flexible and robust methodology such as the Realized GARCH. Within this framework, forecasting of the full density for long horizons is feasible, which we pursue. We document variability in conditional variances over time, which stresses the importance of careful modeling and forecasting of volatility. We show that improved model fit can be obtained in-sample by utilizing high-frequency data compared to standard models that use only daily observations. Additionally, we show that the intraday sampling frequency and method have significant implications for model fit in-sample. Finally, we consider an extensive out-of-sample exercise to forecast the conditional return distribution. The out-of-sample results for the Realized GARCH forecasts suggest a limited added value from using “traditional” realized volatility measures. For the conditional variance, a small gain is found, but for densities the opposite is the case. We conclude that realized measures of volatility developed in recent years must be used with caution in this market, and importantly that the use of high-frequency financial data in this market leaves much room for future research.

Suggested Citation

  • Asger Lunde & Kasper V. Olesen, 2014. "Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange," CREATES Research Papers 2013-19, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2013-19
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/13/rp13_19.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Angus Deaton & Guy Laroque, 1992. "On the Behaviour of Commodity Prices," Review of Economic Studies, Oxford University Press, pages 1-23.
    2. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    3. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Benth, Fred Espen & Cartea, Álvaro & Kiesel, Rüdiger, 2008. "Pricing forward contracts in power markets by the certainty equivalence principle: Explaining the sign of the market risk premium," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2006-2021, October.
    8. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    9. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
    10. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    11. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    12. Haugom, Erik & Westgaard, Sjur & Solibakke, Per Bjarte & Lien, Gudbrand, 2011. "Realized volatility and the influence of market measures on predictability: Analysis of Nord Pool forward electricity data," Energy Economics, Elsevier, vol. 33(6), pages 1206-1215.
    13. Peter Reinhard Hansen & Zhuo Huang, 2016. "Exponential GARCH Modeling With Realized Measures of Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
    14. Higgs, Helen & Worthington, Andrew, 2008. "Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market," Energy Economics, Elsevier, vol. 30(6), pages 3172-3185, November.
    15. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    16. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    17. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    18. Almut E. D. Veraart & Luitgard A. M. Veraart, 2012. "Modelling electricity day–ahead prices by multivariate Lévy semistationary processes," CREATES Research Papers 2012-13, Department of Economics and Business Economics, Aarhus University.
    19. Back, Kerry, 1991. "Asset pricing for general processes," Journal of Mathematical Economics, Elsevier, vol. 20(4), pages 371-395.
    20. Benth, Fred Espen & Koekebakker, Steen, 2008. "Stochastic modeling of financial electricity contracts," Energy Economics, Elsevier, vol. 30(3), pages 1116-1157, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Volatility; Realized GARCH; High-Frequency Data; Electricity; Power; Forecasting; Realized Variance; Realized Kernel; Model Confidence Set; Predictive Likelihood;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.