IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201825.html
   My bibliography  Save this paper

Oil Shocks and Volatility Jumps

Author

Listed:
  • Konstantinos Gkillas

    (Department of Business Administration , University of Patras, Patras, Greece)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, South Africa)

  • Mark E. Wohar

    (College of Business Administration, University of Nebraska at Omaha, Omaha, USA and School of Business and Economics, Loughborough University, Leicestershire, UK)

Abstract

In this paper, we analyse the role of oil price shocks, derived from expectations of consumers, economists, financial market, and policymakers, in predicting volatility jumps in the S&P500 over the monthly period of 1988:01 to 2015:02, with the jumps having been computed based on daily data over the same period. Standard linear Granger causality test fail to detect any evidence of oil shocks causing volatility jumps. But given strong evidence of nonlinearity and structural breaks between jumps and oil shocks, we next used a nonparametric causality-in-quantiles test, since the linear model is misspecified. Using this data-driven robust approach, we were able to detect overwhelming evidence of oil shocks predicting volatility jumps of the S&P500 over its entire conditional distribution, with the strongest effect observed at the lowest considered conditional quantile. Interestingly, the predictive ability of the four oil shocks on volatility jumps are found to be both qualitatively and quantitatively similar.

Suggested Citation

  • Konstantinos Gkillas & Rangan Gupta & Mark E. Wohar, 2018. "Oil Shocks and Volatility Jumps," Working Papers 201825, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201825
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    2. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    3. Wensheng Kang & Jing Wang, 2018. "Oil shocks, policy uncertainty and earnings surprises," Review of Quantitative Finance and Accounting, Springer, vol. 51(2), pages 375-388, August.
    4. Ding, Zhihua & Liu, Zhenhua & Zhang, Yuejun & Long, Ruyin, 2017. "The contagion effect of international crude oil price fluctuations on Chinese stock market investor sentiment," Applied Energy, Elsevier, vol. 187(C), pages 27-36.
    5. Sharif Mozumder & Ghulam Sorwar & Kevin Dowd, 2013. "Option pricing under non-normality: a comparative analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(2), pages 273-292, February.
    6. Christiane Baumeister & Lutz Kilian, 2016. "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 139-160, Winter.
    7. George Filis & Ioannis Chatziantoniou, 2014. "Financial and monetary policy responses to oil price shocks: evidence from oil-importing and oil-exporting countries," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 709-729, May.
    8. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    9. Baumeister, Christiane & Kilian, Lutz, 2014. "A General Approach to Recovering Market Expectations from Futures Prices With an Application to Crude Oil," CEPR Discussion Papers 10162, C.E.P.R. Discussion Papers.
    10. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    11. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 131(4), pages 1593-1636.
    12. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor, 2015. "The risk premia embedded in index options," Journal of Financial Economics, Elsevier, vol. 117(3), pages 558-584.
    13. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    14. Jinghua Wang & Geoffrey Ngene, 2018. "Symmetric and asymmetric nonlinear causalities between oil prices and the U.S. economic sectors," Review of Quantitative Finance and Accounting, Springer, vol. 51(1), pages 199-218, July.
    15. Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Energy Economics, Elsevier, vol. 48(C), pages 18-23.
    16. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    17. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2016. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 29-80.
    18. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    19. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    20. Chien-Hsiu Lin & Shih-Kuei Lin & An-Chi Wu, 2015. "Foreign exchange option pricing in the currency cycle with jump risks," Review of Quantitative Finance and Accounting, Springer, vol. 44(4), pages 755-789, May.
    21. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    22. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2015. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 29-80.
    23. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    24. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    25. Smyth, Russell & Narayan, Paresh Kumar, 2018. "What do we know about oil prices and stock returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 148-156.
    26. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    27. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    28. Junye Li & Gabriele Zinna, 2018. "The Variance Risk Premium: Components, Term Structures, and Stock Return Predictability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 411-425, July.
    29. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, June.
    30. Hamilton, James D. & Wu, Jing Cynthia, 2014. "Risk premia in crude oil futures prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 9-37.
    31. Dimitris Psychoyios & George Dotsis & Raphael Markellos, 2010. "A jump diffusion model for VIX volatility options and futures," Review of Quantitative Finance and Accounting, Springer, vol. 35(3), pages 245-269, October.
    32. A. Malliaris & Mary Malliaris, 2013. "Are oil, gold and the euro inter-related? Time series and neural network analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 1-14, January.
    33. repec:hal:journl:peer-00741630 is not listed on IDEAS
    34. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    35. Giot, Pierre & Laurent, Sébastien & Petitjean, Mikael, 2010. "Trading activity, realized volatility and jumps," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 168-175, January.
    36. Gkillas, Konstantinos & Gupta, Rangan & Wohar, Mark E., 2018. "Volatility jumps: The role of geopolitical risks," Finance Research Letters, Elsevier, vol. 27(C), pages 247-258.
    37. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    38. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    39. Mohan Nandha & Robert Brooks, 2009. "Oil prices and transport sector returns: an international analysis," Review of Quantitative Finance and Accounting, Springer, vol. 33(4), pages 393-409, November.
    40. Sunil K. Mohanty & Joseph Onochie & Abdulrahman F. Alshehri, 2018. "Asymmetric effects of oil shocks on stock market returns in Saudi Arabia: evidence from industry level analysis," Review of Quantitative Finance and Accounting, Springer, vol. 51(3), pages 595-619, October.
    41. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    42. Zeina Alsalman Ana María Herrera, 2015. "Oil Price Shocks and the U.S. Stock Market: Do Sign and Size Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    43. Nikolaos Sariannidis & Grigoris Giannarakis & Eleni Zafeiriou & Ioannis Billias, 2016. "The Effect of Crude Oil Price Moments on Socially Responsible Firms in Eurozone," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 356-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, Open Access Journal, vol. 12(10), pages 1-11, May.
    2. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 13(6), pages 1-19, June.
    3. Sheng, Xin & Gupta, Rangan & Ji, Qiang, 2020. "The impacts of structural oil shocks on macroeconomic uncertainty: Evidence from a large panel of 45 countries," Energy Economics, Elsevier, vol. 91(C).
    4. Konstantinos Gkillas & Rangan Gupta & Chi Keung Marco Lau & Muhammad Tahir Suleman, 2020. "Jumps beyond the realms of cricket: India's performance in One Day Internationals and stock market movements," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 1109-1127, April.
    5. Gkillas, Konstantinos & Konstantatos, Christoforos & Tsagkanos, Athanasios & Siriopoulos, Costas, 2021. "Do economic news releases affect tail risk? Evidence from an emerging market," Finance Research Letters, Elsevier, vol. 40(C).
    6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021. "OPEC news and jumps in the oil market," Energy Economics, Elsevier, vol. 96(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Wohar, Mark E., 2018. "Volatility jumps: The role of geopolitical risks," Finance Research Letters, Elsevier, vol. 27(C), pages 247-258.
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021. "OPEC news and jumps in the oil market," Energy Economics, Elsevier, vol. 96(C).
    3. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    4. Bos, Martijn & Demirer, Riza & Gupta, Rangan & Tiwari, Aviral Kumar, 2018. "Oil returns and volatility: The role of mergers and acquisitions," Energy Economics, Elsevier, vol. 71(C), pages 62-69.
    5. Konstantinos Gkillas & Rangan Gupta & Chi Keung Marco Lau & Muhammad Tahir Suleman, 2020. "Jumps beyond the realms of cricket: India's performance in One Day Internationals and stock market movements," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 1109-1127, April.
    6. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    7. Demirer, Riza & Gupta, Rangan & Suleman, Tahir & Wohar, Mark E., 2018. "Time-varying rare disaster risks, oil returns and volatility," Energy Economics, Elsevier, vol. 75(C), pages 239-248.
    8. Gupta, Rangan & Yoon, Seong-Min, 2018. "OPEC news and predictability of oil futures returns and volatility: Evidence from a nonparametric causality-in-quantiles approach," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 206-214.
    9. Gupta, Rangan & Risse, Marian & Volkman, David A. & Wohar, Mark E., 2019. "The role of term spread and pattern changes in predicting stock returns and volatility of the United Kingdom: Evidence from a nonparametric causality-in-quantiles test using over 250 years of data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 391-405.
    10. Riza Demirer & Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2020. "Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data," Working Papers 2020104, University of Pretoria, Department of Economics.
    11. Syed Jawad Hussain Shahzad & Elie Bouri & Naveed Raza & David Roubaud, 2019. "Asymmetric impacts of disaggregated oil price shocks on uncertainties and investor sentiment," Review of Quantitative Finance and Accounting, Springer, vol. 52(3), pages 901-921, April.
    12. Bahloul, Walid & Balcilar, Mehmet & Cunado, Juncal & Gupta, Rangan, 2018. "The role of economic and financial uncertainties in predicting commodity futures returns and volatility: Evidence from a nonparametric causality-in-quantiles test," Journal of Multinational Financial Management, Elsevier, vol. 45(C), pages 52-71.
    13. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Clement Kyei, 2019. "Monetary Policy Uncertainty and Volatility Jumps in Advanced Equity Markets," Working Papers 201939, University of Pretoria, Department of Economics.
    14. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    15. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    16. Rangan Gupta & Chi Keung Marco Lau & Seong-Min Yoon, 2019. "OPEC News Announcement Effect on Volatility in the Crude Oil Market: A Reconsideration," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(4), pages 1-23, December.
    17. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
    18. Gkillas, Konstantinos & Boako, Gideon & Vortelinos, Dimitrios & Vasiliadis, Lavrentios, 2020. "Non-parametric quantile dependencies between volatility discontinuities and political risk," Finance Research Letters, Elsevier, vol. 32(C).
    19. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    20. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.

    More about this item

    Keywords

    S&P500; Volatility Jumps; Oil Shocks;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201825. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/decupza.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.