IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v27y2023i1p25-47n8.html
   My bibliography  Save this article

Uncertainty and realized jumps in the pound-dollar exchange rate: evidence from over one century of data

Author

Listed:
  • Gkillas Konstantinos

    (Department of Accounting and Finance, Hellenic Mediterranean University, Crete, Greece)

  • Gupta Rangan

    (Department of Economics, University of Pretoria, Pretoria 0002, South Africa)

  • Vortelinos Dimitrios I.

    (Department of Accounting and Finance, Hellenic Mediterranean University, Crete, Greece; and Lincoln Business School, University of Lincoln, Lincoln, UK)

Abstract

We study the importance of economic uncertainty so as to predict realized jumps (hereafter jumps) in the pound-dollar exchange rate. The empirical analysis covers the time period from February 1900 to May 2018 on a monthly basis, incorporating several market states, including various booms and crashes. First, we apply a standard linear Granger causality test in order to identify causal effects from economic uncertainty to jumps. We show that the standard linear Granger causality test fails to capture such casual effects. Providing the misspecification of the linear model, we next make use of a nonparametric causality-in-quantiles test. This test allows us to take into account the substantial evidence of nonlinearity along with the structural breaks between economic uncertainty and jumps. In applying this data-driven robust procedure, we find strong evidence of uncertainty causing jumps of the dollar-pound exchange rate. These results are robust over the entire conditional distribution of jumps, exhibiting the strongest impact at the lowest conditional quantiles considered. In addition, our results are generally found to be robust to alternative measures of uncertainty, jumps generated at a daily frequency based on shorter samples of intraday data, and across three other dollar-based exchange rates.

Suggested Citation

  • Gkillas Konstantinos & Gupta Rangan & Vortelinos Dimitrios I., 2023. "Uncertainty and realized jumps in the pound-dollar exchange rate: evidence from over one century of data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(1), pages 25-47, February.
  • Handle: RePEc:bpj:sndecm:v:27:y:2023:i:1:p:25-47:n:8
    DOI: 10.1515/snde-2020-0083
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2020-0083
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2020-0083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    2. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    3. Uribe, Jorge M. & Chuliá, Helena & Guillén, Montserrat, 2017. "Uncertainty, systemic shocks and the global banking sector: Has the crisis modified their relationship?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 52-68.
    4. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    5. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    6. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    8. Chuliá, Helena & Gupta, Rangan & Uribe, Jorge M. & Wohar, Mark E., 2017. "Impact of US uncertainties on emerging and mature markets: Evidence from a quantile-vector autoregressive approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 178-191.
    9. Bent Jesper Christensen & Charlotte Strunk Hansen, 2002. "New evidence on the implied-realized volatility relation," The European Journal of Finance, Taylor & Francis Journals, vol. 8(2), pages 187-205, June.
    10. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    11. Chatrath, Arjun & Miao, Hong & Ramchander, Sanjay & Villupuram, Sriram, 2014. "Currency jumps, cojumps and the role of macro news," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 42-62.
    12. repec:hal:journl:peer-00741630 is not listed on IDEAS
    13. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    14. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    15. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor, 2015. "The risk premia embedded in index options," Journal of Financial Economics, Elsevier, vol. 117(3), pages 558-584.
    16. Stavros Degiannakis, George Filis, and Renatas Kizys, 2014. "The Effects of Oil Price Shocks on Stock Market Volatility: Evidence from European Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    17. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A comprehensive look at financial volatility prediction by economic variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
    18. Colombo, Valentina, 2013. "Economic policy uncertainty in the US: Does it matter for the Euro area?," Economics Letters, Elsevier, vol. 121(1), pages 39-42.
    19. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    20. Sin, Chor-yiu (CY), 2015. "The economic fundamental and economic policy uncertainty of Mainland China and their impacts on Taiwan and Hong Kong," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 298-311.
    21. Kang, Wensheng & Ratti, Ronald A., 2013. "Oil shocks, policy uncertainty and stock market return," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 305-318.
    22. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    23. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Tran, Vuong Thao, 2018. "Can economic policy uncertainty predict stock returns? Global evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 134-150.
    24. Kido, Yosuke, 2016. "On the link between the US economic policy uncertainty and exchange rates," Economics Letters, Elsevier, vol. 144(C), pages 49-52.
    25. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2015. "The impact of oil price shocks on the stock market return and volatility relationship," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 41-54.
    26. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    27. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    28. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    29. Pierre Giot & Sébastien Laurent, 2007. "The information content of implied volatility in light of the jump/continuous decomposition of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(4), pages 337-359, April.
    30. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    31. Kim, Kyoung-Kuk & Park, Kun Soo, 2014. "Transferring and sharing exchange-rate risk in a risk-averse supply chain of a multinational firm," European Journal of Operational Research, Elsevier, vol. 237(2), pages 634-648.
    32. Giot, Pierre & Laurent, Sébastien & Petitjean, Mikael, 2010. "Trading activity, realized volatility and jumps," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 168-175, January.
    33. Novotný, Jan & Petrov, Dmitri & Urga, Giovanni, 2015. "Trading price jump clusters in foreign exchange markets," Journal of Financial Markets, Elsevier, vol. 24(C), pages 66-92.
    34. Christina Christou & Rangan Gupta & Christis Hassapis & Tahir Suleman, 2018. "The role of economic uncertainty in forecasting exchange rate returns and realized volatility: Evidence from quantile predictive regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(7), pages 705-719, November.
    35. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    36. Scotti, Chiara, 2016. "Surprise and uncertainty indexes: Real-time aggregation of real-activity macro-surprises," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 1-19.
    37. Chan, Kam Fong & Powell, John G. & Treepongkaruna, Sirimon, 2014. "Currency jumps and crises: Do developed and emerging market currencies jump together?," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 132-157.
    38. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    39. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    40. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    41. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    42. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    43. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    44. repec:mfj:journl:v:16:y:2011:i:1-2:p:87-124 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021. "OPEC news and jumps in the oil market," Energy Economics, Elsevier, vol. 96(C).
    2. Konstantinos Gkillas & Rangan Gupta & Mark E. Wohar, 2020. "Oil shocks and volatility jumps," Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 247-272, January.
    3. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    4. Gkillas, Konstantinos & Gupta, Rangan & Wohar, Mark E., 2018. "Volatility jumps: The role of geopolitical risks," Finance Research Letters, Elsevier, vol. 27(C), pages 247-258.
    5. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    6. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    8. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    9. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    10. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    11. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    12. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    13. Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
    14. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    15. Ahdi Noomen Ajmi & Roula Inglesi-Lotz, 2021. "Revisiting the Kuznets Curve Hypothesis for Tunisia: Carbon Dioxide vs. Ecological Footprint," Working Papers 202171, University of Pretoria, Department of Economics.
    16. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    17. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    18. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    19. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    20. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.

    More about this item

    Keywords

    exchange rates; realized jumps; uncertainty;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:27:y:2023:i:1:p:25-47:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.