IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v33y2025icp56-79.html
   My bibliography  Save this article

Diversifying Trends

Author

Listed:
  • Chevalier, Charles
  • Darolles, Serge

Abstract

A new method is proposed for disentangling the systematic components from the idiosyncratic components of risk associated with trend-following strategies. A simple statistical approach combined with standard dimension reduction techniques enables to identify the common trending component of futures market prices. This methodology is applied to a large set of futures, covering all asset classes, to extract a common risk factor, called CoTrend. It is shown that common trends are higher for some cross-asset class pairs than for intra-asset class pairs, such as JPY/USD and Gold. This result is used to create sectors in a portfolio diversification context, especially for trend-following strategies. Additionally, the CoTrend factor helps understand arbitrage-based Hedge Fund strategies, which by essence are decorrelated from standard risk factors.

Suggested Citation

  • Chevalier, Charles & Darolles, Serge, 2025. "Diversifying Trends," Econometrics and Statistics, Elsevier, vol. 33(C), pages 56-79.
  • Handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:56-79
    DOI: 10.1016/j.ecosta.2021.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S245230622100109X
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Getmansky, Mila & Lo, Andrew W. & Makarov, Igor, 2004. "An econometric model of serial correlation and illiquidity in hedge fund returns," Journal of Financial Economics, Elsevier, vol. 74(3), pages 529-609, December.
    2. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    3. Timmermann, Allan, 2001. "Structural Breaks, Incomplete Information, and Stock Prices," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 299-314, July.
    4. Vikas Agarwal, 2004. "Risks and Portfolio Decisions Involving Hedge Funds," The Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 63-98.
    5. Agarwal, Vikas & Ruenzi, Stefan & Weigert, Florian, 2017. "Tail risk in hedge funds: A unique view from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 125(3), pages 610-636.
    6. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    7. Charles Chevalier & Serge Darolles, 2019. "Trends everywhere? The case of hedge fund styles," Journal of Asset Management, Palgrave Macmillan, vol. 20(6), pages 442-468, October.
    8. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    9. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    11. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    12. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    13. Nicholas Chan & Mila Getmansky & Shane M. Haas & Andrew W. Lo, 2007. "Systemic Risk and Hedge Funds," NBER Chapters, in: The Risks of Financial Institutions, pages 235-330, National Bureau of Economic Research, Inc.
    14. A. Chekhlov & S. Uryasev & M. Zabarankin, 2004. "Portfolio Optimization With Drawdown Constraints," World Scientific Book Chapters, in: Panos M Pardalos & Athanasios Migdalas & George Baourakis (ed.), Supply Chain And Finance, chapter 13, pages 209-228, World Scientific Publishing Co. Pte. Ltd..
    15. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    16. repec:dau:papers:123456789/13625 is not listed on IDEAS
    17. Fung, William & Hsieh, David A, 2001. "The Risk in Hedge Fund Strategies: Theory and Evidence from Trend Followers," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 313-341.
    18. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    19. repec:hal:journl:peer-00732538 is not listed on IDEAS
    20. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    21. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Chevalier & Serge Darolles, 2019. "Trends everywhere? The case of hedge fund styles," Journal of Asset Management, Palgrave Macmillan, vol. 20(6), pages 442-468, October.
    2. Racicot, François-Éric & Théoret, Raymond & Gregoriou, Greg N., 2021. "The response of hedge fund higher moment risk to macroeconomic and illiquidity shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 289-318.
    3. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    4. Racicot, François-Éric & Théoret, Raymond, 2019. "Hedge fund return higher moments over the business cycle," Economic Modelling, Elsevier, vol. 78(C), pages 73-97.
    5. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    6. Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
    7. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
    8. Achim BACKHAUS & Aliya ZHAKANOVA ISIKSAL, 2016. "The Impact of Momentum Factors on Multi Asset Portfolio," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 146-169, December.
    9. Gregoriou, Greg N. & Racicot, François-Éric & Théoret, Raymond, 2021. "The response of hedge fund tail risk to macroeconomic shocks: A nonlinear VAR approach," Economic Modelling, Elsevier, vol. 94(C), pages 843-872.
    10. Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
    11. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa O., 2019. "Upside potential of hedge funds as a predictor of future performance," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 212-229.
    12. Bessler, Wolfgang & Drobetz, Wolfgang & Henn Overbeck, Jacqueline, 2005. "Hedge Funds: Die Königsdisziplin" der Kapitalanlage," Working papers 2005/04, Faculty of Business and Economics - University of Basel.
    13. Loriana Pelizzon & Monica Billio & Mila Getmansky, 2008. "Crisis and Hedge Fund Risk," Working Papers 2008_10, Department of Economics, University of Venice "Ca' Foscari".
    14. Duarte, Jefferson & Longstaff, Francis A. & Yu, Fan, 2005. "Risk and Return in Fixed Income Arbitage: Nickels in Front of a Steamroller?," University of California at Los Angeles, Anderson Graduate School of Management qt6zx6m7fp, Anderson Graduate School of Management, UCLA.
    15. Nicolas Bollen, 2011. "The financial crisis and hedge fund returns," Review of Derivatives Research, Springer, vol. 14(2), pages 117-135, July.
    16. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    17. Massimo Guidolin & Alexei G. Orlov, 2022. "Can Investors Benefit from Hedge Fund Strategies? Utility-Based, Out-of-Sample Evidence," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 1-61, September.
    18. Ramiah, Vikash & Xu, Xiaoming & Moosa, Imad A., 2015. "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 89-100.
    19. Billio, Monica & Getmansky, Mila & Pelizzon, Loriana, 2012. "Dynamic risk exposures in hedge funds," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3517-3532.
    20. Agarwal, Vikas & Green, T. Clifton & Ren, Honglin, 2018. "Alpha or beta in the eye of the beholder: What drives hedge fund flows?," Journal of Financial Economics, Elsevier, vol. 127(3), pages 417-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:56-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.