Forecasting U.S. equity market volatility with attention and sentiment to the economy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ben S. Bernanke & Kenneth N. Kuttner, 2005.
"What Explains the Stock Market's Reaction to Federal Reserve Policy?,"
Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
- Ben S. Bernanke & Kenneth N. Kuttner, 2003. "What explains the stock market's reaction to Federal Reserve policy?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- Ben S. Bernanke & Kenneth N. Kuttner, 2003. "What explains the stock market's reaction to Federal Reserve policy?," Staff Reports 174, Federal Reserve Bank of New York.
- Ben S. Bernanke & Kenneth N. Kuttner, 2004. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," NBER Working Papers 10402, National Bureau of Economic Research, Inc.
- Ben S. Bernanke & Kenneth N. Kuttner, 2004. "What explains the stock market's reaction to Federal Reserve policy?," Finance and Economics Discussion Series 2004-16, Board of Governors of the Federal Reserve System (U.S.).
- Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
- Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
- Peng, Lin & Xiong, Wei, 2006.
"Investor attention, overconfidence and category learning,"
Journal of Financial Economics, Elsevier, vol. 80(3), pages 563-602, June.
- Lin Peng & Wei Xiong, 2005. "Investor Attention: Overconfidence and Category Learning," NBER Working Papers 11400, National Bureau of Economic Research, Inc.
- Nikolaos Askitas & Klaus F. Zimmermann, 2009.
"Google Econometrics and Unemployment Forecasting,"
Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," RatSWD Research Notes 41, German Data Forum (RatSWD).
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Discussion Papers of DIW Berlin 899, DIW Berlin, German Institute for Economic Research.
- Askitas, Nikos & Zimmermann, Klaus F., 2009. "Google Econometrics and Unemployment Forecasting," IZA Discussion Papers 4201, Institute of Labor Economics (IZA).
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Ricci, Ornella, 2015. "The impact of monetary policy announcements on the stock price of large European banks during the financial crisis," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 245-255.
- Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012.
"Jump-robust volatility estimation using nearest neighbor truncation,"
Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," CREATES Research Papers 2009-52, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2010. "Jump-robust volatility estimation using nearest neighbor truncation," Staff Reports 465, Federal Reserve Bank of New York.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," NBER Working Papers 15533, National Bureau of Economic Research, Inc.
- Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010.
"Threshold bipower variation and the impact of jumps on volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
- Fulvio Corsi & Davide Pirino & Roberto Reno', 2010. "Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting," LEM Papers Series 2010/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2023. "Forecasting with Economic News," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 708-719, July.
- Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
- Clements, Adam & Preve, Daniel P.A., 2021.
"A Practical Guide to harnessing the HAR volatility model,"
Journal of Banking & Finance, Elsevier, vol. 133(C).
- A Clements & D Preve, 2019. "A Practical Guide to Harnessing the HAR Volatility Model," NCER Working Paper Series 120, National Centre for Econometric Research.
- Simon Tranberg Bodilsen & Asger Lunde, 2025. "Exploiting News Analytics for Volatility Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 18-36, January.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023.
"A Machine Learning Approach to Volatility Forecasting,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
- David O. Lucca & Emanuel Moench, 2015.
"The Pre-FOMC Announcement Drift,"
Journal of Finance, American Finance Association, vol. 70(1), pages 329-371, February.
- David O. Lucca & Emanuel Moench, 2011. "The pre-FOMC announcement drift," Staff Reports 512, Federal Reserve Bank of New York.
- Goddard, John & Kita, Arben & Wang, Qingwei, 2015. "Investor attention and FX market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 79-96.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Rangel, José Gonzalo, 2011.
"Macroeconomic news, announcements, and stock market jump intensity dynamics,"
Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1263-1276, May.
- Rangel José Gonzalo, 2009. "Macroeconomic News, Announcements, and Stock Market Jump Intensity Dynamics," Working Papers 2009-15, Banco de México.
- Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
- Tim Bollerslev & Jia Li & Yuan Xue, 2018.
"Volume, Volatility, and Public News Announcements,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(4), pages 2005-2041.
- Tim Bollerslev & Jia Li & Yuan Xue, 2016. "Volume, Volatility and Public News Announcements," CREATES Research Papers 2016-19, Department of Economics and Business Economics, Aarhus University.
- Guidolin, Massimo & Pedio, Manuela, 2021.
"Media Attention vs. Sentiment as Drivers of Conditional Volatility Predictions: An Application to Brexit,"
Finance Research Letters, Elsevier, vol. 42(C).
- Massimo Guidolin & Manuela Pedio, 2020. "Media Attention vs. Sentiment as Drivers of Conditional Volatility Predictions: An Application to Brexit," BAFFI CAREFIN Working Papers 20145, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Megaritis, Anastasios & Vlastakis, Nikolaos & Triantafyllou, Athanasios, 2021.
"Stock market volatility and jumps in times of uncertainty,"
Journal of International Money and Finance, Elsevier, vol. 113(C).
- Megaritis, Anastasios & Vlastakis, Nikolaos & Triantafyllou, Athanasios, 2020. "Stock market volatility and jumps in times of uncertainty," Essex Finance Centre Working Papers 29200, University of Essex, Essex Business School.
- Gardner, Ben & Scotti, Chiara & Vega, Clara, 2022.
"Words speak as loudly as actions: Central bank communication and the response of equity prices to macroeconomic announcements,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 387-409.
- Benjamin Gardner & Chiara Scotti & Clara Vega, 2021. "Words Speak as Loudly as Actions: Central Bank Communication and the Response of Equity Prices to Macroeconomic Announcements," Finance and Economics Discussion Series 2021-074, Board of Governors of the Federal Reserve System (U.S.).
- Bleher, Johannes & Dimpfl, Thomas, 2022. "Knitting Multi-Annual High-Frequency Google Trends to Predict Inflation and Consumption," Econometrics and Statistics, Elsevier, vol. 24(C), pages 1-26.
- Audrino, Francesco & Offner, Eric A., 2024. "The impact of macroeconomic news sentiment on interest rates," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
- Francesco Audrino & Simon D. Knaus, 2016.
"Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
- Audrino, Francesco & Knaus, Simon, 2012. "Lassoing the HAR model: A Model Selection Perspective on Realized Volatility Dynamics," Economics Working Paper Series 1224, University of St. Gallen, School of Economics and Political Science.
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
- Kam F. Chan & Philip Gray, 2018. "Volatility jumps and macroeconomic news announcements," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(8), pages 881-897, August.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
- Shaen Corbet & Charles Larkin & Brian M. Lucey & Andrew Meegan & Larisa Yarovaya, 2020. "The impact of macroeconomic news on Bitcoin returns," The European Journal of Finance, Taylor & Francis Journals, vol. 26(14), pages 1396-1416, September.
- Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Dimitrios I. Vortelinos, 2015. "Out‐of‐sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini‐futures markets," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 58-67, November.
- Shapiro, Adam Hale & Sudhof, Moritz & Wilson, Daniel J., 2022.
"Measuring news sentiment,"
Journal of Econometrics, Elsevier, vol. 228(2), pages 221-243.
- Adam Hale Shapiro & Moritz Sudhof & Daniel J. Wilson, 2020. "Measuring News Sentiment," Working Paper Series 2017-1, Federal Reserve Bank of San Francisco.
- Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2023.
"Investor Confidence and Forecastability of US Stock Market Realized Volatility: Evidence from Machine Learning,"
Journal of Behavioral Finance, Taylor & Francis Journals, vol. 24(1), pages 111-122, January.
- Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2021. "Investor Confidence and Forecastability of US Stock Market Realized Volatility : Evidence from Machine Learning," Working Papers 202118, University of Pretoria, Department of Economics.
- Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Haidong Cai & Shamim Ahmed & Ying Jiang & Xiaoquan Liu, 2020. "The impact of US macroeconomic news announcements on Chinese commodity futures," Quantitative Finance, Taylor & Francis Journals, vol. 20(12), pages 1927-1966, December.
- Schwert, G William, 1990.
"Stock Returns and Real Activity: A Century of Evidence,"
Journal of Finance, American Finance Association, vol. 45(4), pages 1237-1257, September.
- G. William Schwert, 1990. "Stock Returns and Real Activity: A Century of Evidence," NBER Working Papers 3296, National Bureau of Economic Research, Inc.
- Mohamed A. Ayadi & Walid Ben Omrane & Jiahui Wang & Robert Welch, 2020. "Macroeconomic news, public communications, and foreign exchange jumps around U.S. and European financial crises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-227, April.
- Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
- Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Bertelsen, Kristoffer Pons & Borup, Daniel & Jakobsen, Johan Stax, 2021. "Stock market volatility and public information flow: A non-linear perspective," Economics Letters, Elsevier, vol. 204(C).
- Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
- Hussain, Syed Mujahid, 2011. "Simultaneous monetary policy announcements and international stock markets response: An intraday analysis," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 752-764, March.
- Ehrmann, Michael & Fratzscher, Marcel, 2004. "Taking stock: monetary policy transmission to equity markets," Working Paper Series 354, European Central Bank.
- Chen, Linda H. & Jiang, George J. & Zhu, Kevin X., 2018. "Total attention: The effect of macroeconomic news on market reaction to earnings news," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 142-156.
- Vincent Fromentin, 2022. "Time-varying causality between stock prices and macroeconomic fundamentals: Connection or disconnection?," Post-Print hal-04206765, HAL.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
- Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
- Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
- Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014.
"Good debt or bad debt: Detecting semantic orientations in economic texts,"
Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
- Pekka Malo & Ankur Sinha & Pyry Takala & Pekka Korhonen & Jyrki Wallenius, 2013. "Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts," Papers 1307.5336, arXiv.org, revised Jul 2013.
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
- Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
- Thierry Ané & Hélyette Geman, 2000. "Order Flow, Transaction Clock, and Normality of Asset Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2259-2284, October.
- Fromentin, Vincent, 2022. "Time-varying causality between stock prices and macroeconomic fundamentals: Connection or disconnection?," Finance Research Letters, Elsevier, vol. 49(C).
- Osamah Al-Khazali & Elie Bouri & David Roubaud, 2018. "The impact of positive and negative macroeconomic news surprises: Gold versus Bitcoin," Economics Bulletin, AccessEcon, vol. 38(1), pages 373-382.
- Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.
- Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lyócsa, Štefan & Halousková, Martina & Haugom, Erik, 2023. "The US banking crisis in 2023: Intraday attention and price variation of banks at risk," Finance Research Letters, Elsevier, vol. 57(C).
- Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
- Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
- Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Francesco Audrino & Jonathan Chassot, 2024. "HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning," Papers 2406.08041, arXiv.org.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Fantazzini, Dean & Shangina, Tamara, 2019.
"The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
- Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," MPRA Paper 95992, University Library of Munich, Germany.
- Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
- Imene Ben El Hadj Said & Skander Slim, 2022. "The Dynamic Relationship between Investor Attention and Stock Market Volatility: International Evidence," JRFM, MDPI, vol. 15(2), pages 1-25, February.
- Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
- Haukvik, Nicole & Cheraghali, Hamid & Molnár, Peter, 2024. "The role of investors’ fear in crude oil volatility forecasting," Research in International Business and Finance, Elsevier, vol. 70(PB).
- Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
- Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
- Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
- Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.19767. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.