IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.01033.html
   My bibliography  Save this paper

Estimation of integrated quadratic covariation with endogenous sampling times

Author

Listed:
  • Yoann Potiron
  • Per Mykland

Abstract

When estimating high-frequency covariance (quadratic covariation) of two arbitrary assets observed asynchronously, simple assumptions, such as independence, are usually imposed on the relationship between the prices process and the observation times. In this paper, we introduce a general endogenous two-dimensional nonparametric model. Because an observation is generated whenever an auxiliary process called observation time process hits one of the two boundary processes, it is called the hitting boundary process with time process (HBT) model. We establish a central limit theorem for the Hayashi-Yoshida (HY) estimator under HBT in the case where the price process and the observation price process follow a continuous Ito process. We obtain an asymptotic bias. We provide an estimator of the latter as well as a bias-corrected HY estimator of the high-frequency covariance. In addition, we give a consistent estimator of the associated standard error.

Suggested Citation

  • Yoann Potiron & Per Mykland, 2015. "Estimation of integrated quadratic covariation with endogenous sampling times," Papers 1507.01033, arXiv.org, revised Nov 2016.
  • Handle: RePEc:arx:papers:1507.01033
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.01033
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    3. Fukasawa, Masaaki, 2010. "Realized volatility with stochastic sampling," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 829-852, June.
    4. Yoann Potiron & Per Mykland, 2016. "Local Parametric Estimation in High Frequency Data," Papers 1603.05700, arXiv.org, revised Aug 2018.
    5. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    6. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    7. Takaki Hayashi & Shigeo Kusuoka, 2008. "Consistent estimation of covariation under nonsynchronicity," Statistical Inference for Stochastic Processes, Springer, vol. 11(1), pages 93-106, February.
    8. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    9. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    10. Per Mykland, 2012. "A Gaussian calculus for inference from high frequency data," Annals of Finance, Springer, vol. 8(2), pages 235-258, May.
    11. Hayashi, Takaki & Yoshida, Nakahiro, 2011. "Nonsynchronous covariation process and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2416-2454, October.
    12. Takaki Hayashi & Nakahiro Yoshida, 2008. "Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 367-406, June.
    13. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    14. Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2013. "On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 59-84.
    15. Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
    16. repec:hal:journl:peer-00732537 is not listed on IDEAS
    17. Li, Yingying & Mykland, Per A. & Renault, Eric & Zhang, Lan & Zheng, Xinghua, 2014. "Realized Volatility When Sampling Times Are Possibly Endogenous," Econometric Theory, Cambridge University Press, vol. 30(03), pages 580-605, June.
    18. Masaaki Fukasawa, 2010. "Central limit theorem for the realized volatility based on tick time sampling," Finance and Stochastics, Springer, vol. 14(2), pages 209-233, April.
    19. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    20. Fukasawa, Masaaki & Rosenbaum, Mathieu, 2012. "Central limit theorems for realized volatility under hitting times of an irregular grid," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3901-3920.
    21. Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.
    22. Jayaram Muthuswamy & Sudipto Sarkar & Aaron Low & Eric Terry, 2001. "Time variation in the correlation structure of exchange rates: high‐frequency analyses," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(2), pages 127-144, February.
    23. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    24. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    25. Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
    26. Per Aslak Mykland & Lan Zhang, 2006. "ANOVA for diffusions and It\^{o} processes," Papers math/0611274, arXiv.org.
    27. Christian Y. Robert & Mathieu Rosenbaum, 2011. "A New Approach for the Dynamics of Ultra-High-Frequency Data: The Model with Uncertainty Zones," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 344-366, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clinet, Simon & Potiron, Yoann, 2018. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Journal of Econometrics, Elsevier, vol. 206(1), pages 103-142.
    2. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.01033. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.